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ABSTRACT

Nowadays, the state-of-the-art approach in numerical modelling for nuclear reactors is
represented by the multi-physics (MP) analysis. This framework enables the investigation of
the inter-dependency between different physics characterising a reactor (e.g., neutronics and
thermal hydraulics) for a deeper understanding of the phenomena occurring in the system.
The coupling can occur in two ways: by developing interfaces between single-physics codes
(e.g., Serpent for neutronics and OpenFOAM for thermal-hydraulics) or gathering every physics
inside a single environment. The latter path has become state-of-the-art in the nuclear field;
however, this approach loses all the previous validations of the single-physics codes; moreover,
the computational resources for such complex numerical models are still demanding. Data-
driven reduced Order Modelling can play a crucial role by shifting the coupling to the reduced
level rather than to the full-order model, thus keeping using the already-validated and widely-
used single-physics codes: the data collected from the physical system intrinsically contain
multi-physics information and thus, can be used eventually to correct the physics not considered
by the model. This work applies this novel approach to a 2D coupled neutronic-thermal case
study based on the PWR geometry in the Argonne National Laboratory (ANL) benchmarks; the
obtained results are promising in showing the reliability and efficiency of the proposed method
and paving the way for a more in-depth investigation in more complex scenarios.

1 INTRODUCTION

For decades, many efforts have been made to develop accurate models for the com-
plete physical description of nuclear reactors and to use them to make predictions and design
components. Nuclear systems involve different physics, and coupling feedback effects play a
crucial role in the reactor, thus making their mathematical modelling challenging. For years, the
state-of-the-art approach in nuclear reactor modelling has been using accurate single physics
models (e.g., thermal hydraulics, neutronics or thermo-mechanics), introducing the coupling ef-
fects through correlations, typically calibrated from experiments. This choice was driven by the
fact that mathematical models, represented by Partial Differential Equations (PDEs), require a
numerical solution using computer codes, and the computational resources are usually limited.
Thus, a single physics approach was chosen.

However, in recent years the available computational power has increased a lot, making
heavier simulations possible; hence, the modelling of nuclear reactors is shifting to Multi-Physics



(MP) modelling [[1]], i.e., creating a more detailed description of the system itself by coupling dif-
ferent physics together. The numerical solution of these Full Order Models (FOMs) is rather
challenging and still requires powerful computers with non-negligible computational time, which
can be again critical if multiple evaluations are required (multi-query scenarios) or if real-time
analyses are needed. In these contexts, using Reduced Order Modelling (ROM) techniques [2]
is necessary, as they allow for keeping a desired level of accuracy with reasonable computa-
tional times.

Furthermore, in recent years, modelling from data has also become quite popular [3], and
the possibility of combining data with some background mathematical knowledge has gained
interest in several fields within the so-called Data Assimilation (DA) framework [4]. This frame-
work has encountered much interest because it overcomes the main limitations of both models
and data: in the former, mathematical models are derived under some assumptions and are af-
fected by uncertainty on the parameters; on the other hand, data may be polluted by random or
systematic noise, however, as they are evaluations from the physical system they may contain
information on un-modelled physics or non-parametric uncertainty [5]. The typical mathematical
setting of DA usually requires multiple evaluations of mathematical models, and hence using
ROM methods is required; to this aim, data-driven ROM techniques have been developed, such
as the Gappy-POD [6] or the Generalised Empirical Interpolation Method (GEIM) [7]. These
methods can be theoretically described within the framework of a Parameterised-Background
Data-Weak (PBDW) formulation [5], providing a mathematical base for the use of data to update
or correct the prediction of the mathematical models.

This idea can be exploited in the framework of MP modelling: in fact, the single-physics
approach could still be used to generate a proper representation in the reduced coordinate
system, then real data, which inherently contains MP information, as they come from the real
system, are used as an update to introduce the un-modelled physics. In this way, all the previ-
ous experience and validation performed on state-of-the-art single-physics codes can be main-
tained; moreover, single-physics codes are less computationally expensive than the numerical
solution of full MP models. Furthermore, in addition to the novel implementation of MP models,
brand-new codes must pass a deep phase of verification and validation before being used, for
example, for safety-related applications.

This work aims at analysing this possibility using GEIM and PBDW methods to correct
inaccurate single-physics models using data, adopting as a benchmark a 2D coupled neutronic-
thermal case study based on the PWR geometry in the Argonne National Laboratory (ANL) [8].
The paper is organised as follows: in Section | a brief discussion of the data-driven ROM
methods used is given, including a presentation of model correction for MP problems; Section
E is devoted to the numerical test case and the results; in the end, the main conclusions are
drawn in Section [.

2 DATA-DRIVEN REDUCED ORDER MODELLING

All model order reduction techniques are characterised by an offline-online decomposi-
tion [2]: firstly, the FOM is solved several times to generate a set of training solutions (called
snapshots characterised by A/}, degrees of freedom), that are used to generate a set of basis
functions (which represent the spatial dependence of the solutions and their physical interpreta-
tion may vary according to the adopted algorithm), which spans a reduced space onto which the
model is represented; then, in the online phase, a Reduced Order Modelfl is solved repetitively
in a fast and accurate way thanks to its much lower complexity. This framework is referred to
as the reduced basis approach, in which the state of the system « (i.e., the solution of the FOM)

"This can be a "small” system of Ordinary Differential Equations or even a linear system, depending on the
adopted technique. Regardless, their dimension M is much lower than A},.



is approximated with a linear combination of a set of basis function {¢,,}_,, i.e.
N
u(X; 1) = Y an(p) - (), xeQcRland peDcCRP (1)
n=1

given u the parameters and {a,,(u)}_, the modal or reduced coefficients, weighting the im-
portance of each spatial basis function.

The main focus of this work is on data-driven ROM, a novel set of techniques able to
combine the knowledge of the mathematical model and the real evaluations of the system. In
this way, compared to standard ROM methods the state prediction is not bounded by the model
accuracy, and it can be improved, even during operation, by integrating measurements of the
physical fields of interest. These methods add an important step in the offline phase mentioned
above, related to the search for the optimal positioning of sensors to maximise the amount of
information extracted from the system and thus to better include unanticipated uncertainty and
un-modelled physics [9].

2.1 Generalised Empirical Interpolation Method

The Generalised Empirical Interpolation Method (GEIM) is a data-driven ROM technique
proposed in [7], based on a greedy algorithm for the selection of basis functions and sensors.
In particular, hierarchical spaces are built to approximate a given function » with a suitable
interpolant

M
U(X; PJ) = I]VI [u] (X; PJ) = Z 5m(#) : Qm(x) s.t. {Um(u) = Um (IM)}%:D (2)
m=1

where the spatial behaviour is given by the magic functions {g,,(x}*/_, and the parametric
dependence by the coefficients {3,,(x}}_,. Each magic function q,, is associated with a magic
sensor v,,(-; X,,, s), mathematically represented by a linear functional centred in x,,, € Q and
with a point-spreadE s € R, representing the area onto which the sensors "acts” to collect the
measure (as sensors have a physical dimension, and thus they don’t collect true point-wise
information).

During the offline stage, the greedy procedure takes as input the training snapshots and
returns a set of magic functions and sensors by minimising at each step the interpolation error.
The magic sensors are chosen among a library T, representing the set of possible locations in
the domain, to maximise the amount of information extracted from the system. Then, the online
phase aims at determining the coefficients using collected data y € RM from the real system:

Ym = U (U8 (X); Xy, 8) + Em withm =1,... M. (3)

For the sake of brevity, in this work data are assumed to be noiseless, i.e. ¢, = 0. Then, the
reduced coefficients 3 € RM are the solution of a linear system of dimension M << A}, arising
from the interpolation condition B3 =y with B;; = v;(q;), giveni,j =1,... M.

2.2 Parameterised-Background Data-Weak formulation

The Parameterised-Background Data-Weak (PBDW) formulation [§] is based on a least-
squares approximation [4], with the important novelty of taking into account unanticipated un-
certainty as modelling errors. The state u(x; p) is approximated through a linear combination

2These properties comes from the fact that experimental sensors can be modelled as linear functionals with a
Gaussian kernel [Z].



of two contributions: the background knowledge zx and the update 7,
N M
w(X; o) ~ 2y (X 1) + (6 ) = > () - Gu(X) + > (1) - g (X), (4)
n=1 m=1

in which {¢,,})_, is the basis of the reduced space of dimension N approximating the informa-
tion of the mathematical model and {g,, }/_, is the basis of the update space, having dimension
M, representing un-modelled physics. The reduced space can be built using the most suitable
algorithm for the specific problem under consideration: in this work, the Proper Orthogonal De-
composition (POD) [2] is used. On the other hand, the bases of the update space are related
to the sensors: in this work, the SGREEDY procedure [§] is used to create the update space,
aiming at minimising the reconstruction error of the method in order to select the optimal config-
uration of the sensors {vm}n]‘{zl. The basis functions g,,, are defined as the Riesz representation
of the sensor/linear functional v,,, (for the mathematical definition, see [5]).

During the online phase, once the data have been collected, the coefficients o € RY and
0 < RM are computed as the solutions of the following linear system of dimension (N + M)

A K a | |y . Apm = (gm, gm’)LQ(Q)
[ KT 0 :| ' [ (7] :| - [ 0 :| given { Kmn = (gm7 Cn)L2(Q) (5)

withm,m'=1,...Mandn=1,...,N.

2.3 Multi-Physics model correction

Both the GEIM and the PBDW are data-driven ROM techniques able to integrate the in-
formation of mathematical models and real evaluations on the system: this important feature
can be exploited in nuclear reactor modelling as follows. Supposing to have at disposal two
different single-physics solvers for a transient problem, one for the neutronics and one for the
thermal-hydraulics, two different high-fidelity models are built: one with a full and accurate cou-
pling scheme between them acting as the fruth, labelled as FOM, and another with a weaker
and inaccurate coupling, labelled as aFOM (approximate FOM). The former is implemented us-
ing a segregated coupled approach [{]], whereas the latter is implemented assuming that the
neutronics code cannot directly communicate with the thermal code and that the latent/coupling
information is inserted as a boundary exploiting the POD with Interpolation [10]. The idea of
aFOM serves to mimic the de-coupling of single physics codes, which has been the state-
of-the-art for nuclear reactor modelling for years, in particular, some coupling effects may be
missed to be later updated in the online phase.

The basis functions and the sensors, both for GEIM and PBDW, are generated using
the snapshots of the aFOM; then, during the online phase, the data coming from the FOM
are used to try to correct the inaccuracy contained in the training data (which comes from the
approximated FOM with the weaker coupling).

3 NUMERICAL RESULTS

The possibility of correcting Multi-physics models using data-driven ROM techniques fol-
lowing the methodology discussed above is now investigated on a nuclear test case based on
the IAEA 2D PWR benchmark [11], 8]. The FOM and aFOM are implemented in Python using
the FEniCSx finite element library; moreover, the ROM techniques have been implemented in
the pyforce Python package (see Section [l), which will be made available in the future.


https://fenicsproject.org/

3.1 Description of the test case

As mentioned above, the test case considered in this work is a 2D geometry mimicking
the shape of a PWR. Neutronics is modelled using unsteady 2-groups diffusion equations for
the fast and thermal flux ¢, and ¢, along with the precursors’ equations for {Cj}?:13

6
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with vacuum and symmetry boundary conditions for the fluxes. On the other hand, the temper-
ature T is governed by the unsteady heat equation

oT

— =V (kVT)+¢" (7)

ot
with convective and symmetry boundary conditions.

These equations are coupled through the temperature dependence of the absorption

cross-sections and the diffusion coefficients

T .
given vp and ~, the feedback coefficients, and through the fission power ¢ = P - X909,

provided the normalisation constant P.

This set of equations is solved for the aFOM and the FOM to generate the snapshots
necessary for the offline and online phases, respectively. The inaccuracy of the aFOM with
respect to the FOM is measured in terms of absolute E and relative ¢ error, in L2—norm, and the
values are reported in Table [1]: the neutronics fields are the most inaccurate ones. The training
snapshots of the aFOM have been computed until #; = 1's, whereas the FOM snapshots are
collected upto to = 2 s to assess the predictive/extrapolation capabilities of GEIM and PBDW.
Hence, the role of i is played by the pseudo parameter ¢ (s).

Table 1: Absolute E and relative ¢ error (maximum and average) between the FOM and the
aFOM, measured in L2—norm.

Fleld tlénE?':n E trénE?‘:fn € <E>t65train <€>t65train
T 75293 1.1% 177.55 0.26%
h1 7743  19.4% 20.39 4.9%
®2 21.67 19.0% 5.70 4.8%

3.2 State estimation: model correction and prediction

This work focuses on the direct reconstruction and time prediction of the fluxes ¢; and ¢-
and the temperature T' through GEIM and PBDW using the training snapshots of the aFOM and
the "synthetic measurements” of the FOM. The point spread of the sensors is assumed to be
s = 1 for all the fields, whereas the available positions are all the cells of the numerical mesh.

3The particular transient chosen as the case study has been chosen following the value of the benchmarks [8].
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Figure 1: Comparison of the normalised power and average temperature with respect to initial
condition for the FOM, aFOM, GEIM and PBDW.

Once the snapshots for the aFOM are obtained from the numerical solver, the offline phase
of the GEIM and PBDW can take place. For the PBDW, at first, the POD is performed on each
field (¢1, ¢2) and T to assess the reducibility of the problem and to generate the basis functions
{¢. 3N, of each field; then, the SGREEDY algorithm is executed to find the sensors positions of
the PBDW and thus the basis {g,,}_,. For the GEIM, the GEIM offline phase is performed on
each variable to place the magic sensors {v,,}*!_, and to select the magic functions {g,, }}_,.
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Figure 2: Contour plots of the FOM, GEIM and PBDW (interpolant and residual) at the final
time, 2 seconds for the fast flux ¢,. The black dots represent the positions of the experimental
Sensors.

The online phase can finally take place, starting by "collecting the measurements” from
the snapshots of the FOM through Equation (). It has been chosen ¥ as the maximum number

4These values are taken by looking at the POD eigenvalues and the reconstruction error of the algorithms in the



of available sensors M = 15 both for GEIM and PBDW (for the former, this value is equal to the
dimension of the reduced space), whereas the dimension of the reduced space of PBDW is set
at N =5.

Figure [1 shows the reconstruction of the core power (normalised with respect to the initial
condition) and the average temperature difference compared to the initial one using GEIM and
PBDW. The aFOM predicts a wrong evolution of both quantities due to the inaccurate coupling
between physics, whereas the estimation of GEIM and PBDW is in almost perfect accordance
with the truth (in this case, the FOM). This result shows that even starting from inaccurate
training snapshots, the basis/magic functions contain enough physical information about the
coupling phenomena to correctly predict the power and temperature evolution.

In addition to the comparison in terms of power and average temperature, the spatial field
reconstructions for the fast flux ¢, of GEIM and PBDW are compared to the truth in Figure B,
which also shows the residual field r[| defined as r[u](x) = |u — Parul|, given Py, the recon-
struction operator with A/ measurements. This field was chosen because it is the one with the
highest difference between FOM and aFOM and thus the worst case. The average value of the
residual fields is quite low even for the worst reconstructed field, which is proof of the accuracy
of the reconstruction by GEIM and PBDW.

177.55 5e-02 5e-02
9 Hl .OM Hl .FOM
10 I GEIM [ GEIM

€3] 200 1 PBDW || C— PBDW 1072

= -

o A () o

= 10° 5.70 o =

< 10 &

Q

2

— +

2 100 26-04 20-04 %?

—C% le-04 g ™
107 ¢

% | 2

o . 3e-05 S

§ 10 0.06 4

< 10770

0.02
1072 0.01 0.01

o1 05 T o 05

Figure 3: Bar plot of the absolute E and relative ¢ average error with respect to the truth (FOM).

Finally, Figure 8 shows the error between aFOM, GEIM and PBDW compared to the truth
(i.e., the FOM) measured using the L?—norm: indeed, the information of the measurements is
enough to globally correct the inaccuracy of the background model.

4 CONCLUSIONS

This work analyses the possibility of combining the knowledge of mathematical models
and data to update the former, exploiting the new information coming from the latter. In par-
ticular, this possibility is studied in the MP framework for nuclear reactors: data-driven ROM
techniques can be adopted to save the experience and the validity of single-physics codes:
in particular, the prediction of the mathematical model, represented in a reduced coordinate
system, is corrected by the data, which contains information on un-modelled physics about the
coupling effects between the different variables. In this work, a simple 2D test case is discussed
as a preliminary test for this approach, and the results obtained are really promising: in fact, the
wrong output of the mathematical model is properly corrected both globally, in terms of power
and average temperature, and locally.

offline phase, as in [2, 9], not reported here for sake of brevity.



In the future, further investigations are foreseen considering noisy data, reconstruction
of unobservable fields and different modelling strategies for the generation of the snapshots of
aFOM.

A  DATA AVAILABILITY

The pyforce (Python Framework for data-driven model Order Reduction of multi-physiCs
problEms) package used in this work is part of the ROSE framework (Reduced Order multi-
phySics data-drivEn) developed by the authors. The package will be published on GitHub at
https://github.com/ROSE-Polimi/pyforce under the MIT licence.
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