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ABSTRACT 

In neutronics calculations, two-step calculation schemes are often used for 
computationally demanding tasks. This article concerns the challenge of group constant 
parametrization in these schemes by applying various machine learning methods. Several 
fitting methods have been examined and implemented in a package that conducts 
hyperparameter optimization and automatic model selection. Models were trained and 
evaluated on data from a VVER-1200 fuel assembly, calculated using the MULTICELL 2D 
transport code. An optimized and modified polynomial regression algorithm was found to be 
the best-performing model. 

1 INTRODUCTION 

The need for group constant parametrization arises from the two-step neutronics 
calculation schemes. The first code produces few-group constants spatially homogenized to 
assemblies or nodes, while the second code uses these for full core calculations. These 
values depend on several properties, including burnup and various operating conditions 
(e.g., temperatures, moderator density, boron concentration), these properties will be 
subsequently referred to as features. Since the first code can produce group constant values 
for a finite number of feature combinations, and the second code may need the values for 
any feature combination, a predictive model (also called the parametrized group constant 
library) is needed for each group constant. 

The simplest solution is a linear interpolation between the calculated values (sample 
points). However, its fitting performance is suboptimal when the number of sample points is 
limited (e.g. when the first code uses a computationally expensive Monte Carlo method). To 
overcome this limitation, various regression-based algorithms have been examined in the 
literature, including stepwise regression [1], [2]. Recent studies have also investigated other 
models, such as a combination of neural networks and decision trees whose performance 
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exceeded that of the polynomial regression [3], and a support vector regression model that 
also includes a novel optimization procedure [4]. 

In this paper, a testing and optimization methodology will be presented with various 
algorithms, and their respective fitting performances will be compared on an assembly 
model. 

2 METHODOLOGY 

In this section, the whole testing and fitting pipeline will be discussed, starting from 
sample point generation through testing and optimization steps to the description of the fitting 
algorithms used. 

2.1 Group constant generation 

A goal of the research this study is part of is to determine the best method specifically 
for Monte Carlo-generated group constants. This requires the algorithm to be robust for 
stochastic variation of the values and to perform well even on smaller datasets since Monte 
Carlo methods are much more time- and resource-consuming than traditional, deterministic 
methods. Because of this limitation, a deterministic code called MULTICELL was used for 
testing purposes in this study. MULTICELL was developed at the Centre for Energy 
Research, which is a part of KARATE-1200 code system [5], an improved version of 
KARATE-440 [6]. 

The physical model used in this study was an assembly of the VVER-1200-type 
pressurized water reactor, which consists of hexagonally arranged fuel pins containing 
uranium dioxide with 4.0% enrichment. It contains guide and instrumentation tubes but no 
fuel rods with burnable poison. 

2.2 Data point distribution and dataset splitting 

After a set of data points (homogenized cross-section values and their respective 
feature vectors) have been generated, the next step is the division of these into training and 
test datasets. The training dataset is what we refer to as the set of points on which the fitting 
algorithm is performed, while the test dataset is the set of points on which we evaluate the 
performance of the fitted model using an error metric. The test points should never be used 
during fitting since the evaluated performance has to show how well the model performs on 
new, previously unseen data. This split must be done in a way that the two resulting datasets 
are independent of each other in structure. Otherwise, the evaluated performance can be 
unrealistically good, as the model can pick up information true for that specific structure of 
the datasets but not for the whole feature space. 

A third set of points is needed for performance evaluation during hyperparameter 
optimization, which will be discussed later in section 2.4. It is referred to as the validation 
dataset and should be independent of both the training and test datasets. 

A simple dataset distribution and division methodology is to generate a regular N-
dimensional grid of sample points (N is the number of features, including burnup) and divide 
them randomly into training, validation, and test datasets. However, the aforementioned 
independence is not fulfilled this way since the test points fill the holes in the grid. Thus, 
much more information is known about them than a point somewhere in the middle of a grid 
cell. 

A solution would be to generate points randomly distributed in the feature space and 
then split them randomly into the three desired sets. The independence of the datasets’ 
structure is ensured this way, as all sample points are completely independently distributed 
from each other, and there is zero correlation between the features [1]. In our case, however, 



914.3 

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, 
September 11 – 14, 2023 

MULTICELL can only generate random points with respect to the non-burnup features, while 
burnup can be changed in discrete steps (depletion calculation). Therefore the sample point 
distribution is still grid-like, albeit only in one dimension. 

To avoid this, our sampling methodology was to generate three different datasets 
instead of splitting a single one. The burnup points are different in all three sets. The base 
point of the depletion calculation (where the burnup steps are calculated, technically a line 
along the burnup axis in the N-dimensional feature space), as well as all material and 
geometry input data, remains the same among the three runs. It is important to note that 
apart from random points inside the N-dimensional feature space, the training dataset also 
contains extremal points at the edge of the feature space so that no extrapolation is needed 
during evaluation. The limits of the feature space in each dimension are shown in Table 1. 
The table also shows the respective base point of depletion calculation. The burnup steps 
are heuristically selected in a way that steps are more frequent for small values since the 
most complex burnup dependence appears at the beginning of a fuel cycle. The number of 
points in the training, validation, and test datasets is 1211, 239, and 239, respectively. 

Table 1. Range of each feature and the base point of the depletion calculation 

Feature Unit Lower limit Upper limit Base point 

Burnup MWd/kgU 0 23.96 - 

Boric acid concentration g/kg 0.0 8.0 8.0 

Fuel temperature K 300.0 1200.0 874.0 

Coolant temperature K 300.0 586.7 586.7 

Coolant density g/cm3 0.791 1.000 0.791 

It is important to mention that scaling of the feature space should be undertaken before 
performing a fit. It is a mapping to a space where the sample point distribution has a mean of 
0 and a standard deviation of 1 in every dimension (standardization). The purpose of this 
procedure is to avoid numerical errors that can emerge in some of the algorithms when 
different features have vastly different magnitudes. For example, when expressed in atoms 
per cubic centimeters, atomic densities are usually several orders of magnitudes larger than 
all other features. 

2.3 Testing 

A model’s performance is evaluated by comparing the predicted values to the test set’s 
target values at the points in the feature space where the test set has its samples. Several 
error metrics can be used, most commonly the root of mean square error (RMS) and the 
mean absolute error (MAE). We used RMS during the study because it gives a higher loss 
for a few large errors coming from a badly working model than for numerous small errors that 
can result from stochastics in the case of Monte Carlo. 

A very small training error coinciding with a high test error is a hallmark of overfitting, 
which means, our model is overtrained on the data and learns some structure that is only 
true for the specific part of the feature space where the training samples are located. The 
opposite effect is called underfitting when the applied model is too simple to grasp the 
complexity of the problem to be fitted (e.g., fitting a linear on a nonlinear dependence). One 
of the methodology's biggest challenges is finding the balance between over- and 
underfitting. 
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2.4 Hyperparameter optimization 

An essential step in the pipeline is the optimization of the model. For a fitting algorithm, 
there are parameters that are specific not for the particular fit but to the model used, and they 
are called hyperparameters. Just like performance evaluation with the training set is 
undertaken in order to determine the best fitting parameters, hyperparameter optimization 
with the validation set is to determine the best combination of hyperparameters. As an 
example, in polynomial regression, the model’s parameters are the coefficients of the fitted 
polynomial, while the maximum degree of the polynomial is the model’s hyperparameter. In 
other algorithms, there can be multiple hyperparameters for which the model’s performance 
can drastically differ. 

Determining the best combination of hyperparameters can be simply done by 
performing a fit with each combination and choosing the best-performing one. This is called 
grid search optimization. However, this can be done only with hyperparameters that have 
discrete values, and a larger number of hyperparameters results in an exponentially larger 
number of potential combinations. Some of the algorithms used in this study have many 
hyperparameters, so another approach called Bayesian optimization is used. This means 
that the optimizer algorithm searches iteratively, every guess is based on knowledge 
acquired by the previous guesses. This procedure cannot be parallelized like grid search, 
however, it finds a well-performing combination in much fewer steps. 

We used the Optuna [7] framework, which is a flexible framework that can use several 
algorithms and black-box optimization. It means the optimizer framework knows nothing 
about the problem to be optimized, it simply provides the client code with a set of 
hyperparameters and receives a simple number (error value) from the client code after it has 
run. Due to this principle, one can arbitrarily modify the returned error function in a way that 
more complex models get a punishment (e.g., a multiplication factor that scales with the 
model’s complexity). This can steer the optimization procedure to simpler models, thus 
preventing overfitting. Optuna can dynamically construct the hyperparameter space with 
conditionals and loops. This gives huge flexibility in adding further hyperparameters for better 
optimization. Optuna uses a Bayesian algorithm called Parzen tree estimator search for the 
iterative search for the best hyperparameter combination. 

2.5 Models 

In this section, the implemented fitting algorithms are presented, ranging from simpler 
to more complex methods. The SciPy, Scikit-learn, and Keras libraries were used [8]–[10]. 

The simplest ways to handle this problem are the various interpolation methods, such 
as linear interpolation. This method approximates a point by fitting it on a linear function 
connecting two (or, in a multidimensional case, more) neighbouring points. These algorithms 
are unable to extrapolate the data and are heavily limited by the density of data points, more 
so than other algorithms. Hyperparameter optimization is not needed for these methods. 

Linear regression algorithms are one of the most commonly used approaches for these 
kinds of problems. The simplest linear regression is fitting a linear function to the dataset 
using the ordinary least square (OLS) method. Fitting any other function (e.g., a polynomial) 
can be equalled to multiple linear regression if one applies the function to the features and 
adds the results to the dataset as new features. A generalized polynomial regression would 
take not just the powers of each feature but also the mixed products into account. In such an 
algorithm, there are multiple ways to construct the hyperparameter space. One approach is 
that the single hyperparameter is the maximum degree of any term in the polynomial 
function. Another approach to this problem is to give a hyperparameter for each feature that 
denote the maximum degrees the features can be raised to in any term (pure power or mixed 
product as well) of the polynomial. 
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In this study, these two approaches were combined in order to prevent the emergence of 
very high-degree mixed terms, which can lead to overfitting. The hyperparameter space 
consists of maximum degrees for each feature and an overall limit to the rank of terms that 
excludes any mixed terms, which would be otherwise allowed according to the features' 
degree limits. To add even more flexibility, taking square roots of the features into account 
were also added as boolean (0 or 1) hyperparameters for each feature. This is sensible not 
only in mathematical but also in physical sense, as the neutronic Doppler effect depends on 

the square root of fuel temperature. This gives overall 𝑁 = 2𝑛 + 1 hyperparameters for which 
one should find the optimal combination. As a larger number of raw features results in an 
exponentially larger number of possible combinations, it gets practically impossible to find the 
global minimum. The goal with the optimization is instead to find a reasonably good 
combination with performance close to the optimum. We named this method ‘CORK’ 
regressor for convenience, and it is referred to as such in the further sections. 

Instead of the OLS method, other fitting methods can be considered for polynomial 
regression. Ridge regression takes into consideration the magnitude of the fitting coefficients 
(regularization), as the OLS method may overfit, resulting in very high coefficients. The ridge 

method minimizes the sum of the OLS error function and α|𝐜|2, where α is called the 

regularization parameter and 𝐜 is the vectorized form of the coefficients. Thus, fittings with 
smaller coefficients are preferred by the algorithm. Lasso regressor uses the 1-norm (sum of 
absolute values) of the coefficients in a similar manner. Choosing from these three methods 
is also added to CORK regressor as a discrete hyperparameter, with the respective 
regularization parameters added as conditional, continuous hyperparameters. 

Random forest is a widely used algorithm for both classification and regression 
problems. It consists of an ensemble of decision trees, which themselves are non-parametric 
models trained by successively dividing (“branching”)  data points into groups (“leaves”) 
according to a determined criterion, thus getting into a tree structure, this is where its name 
stems from. The best splitting criterion (the feature and its value where the division happens) 
is itself determined by an entropy calculation. Training several trees with a random selection 
of sample points and features and taking the average of each one’s prediction as the whole 
model’s prediction (thus “planting a forest from randomized trees”) serves as protection from 
overfitting. Pruning techniques can also be used to avoid this. In this study, Scikit-learn’s 
random forest implementation was used [8]. 

Support-vector machines (SVMs) are commonly used in problems with high 
dimensionality (a large number of features) and for small and medium-sized datasets. For 
regression problems, the goal is to find a hyperplane that best fits the data being learned. In 
this case, the support vectors are the data points at a given distance (ε) from the hyperplane. 
During training, we minimize the distance between the hyperplane and the data points, 
ignoring the points between the hyperplane and the support vectors. The advantage of SVM 
is that it allows transforming the data by nonlinear projection using the kernel trick, which 
enables the solution of nonlinear problems. In this study, Scikit-learn’s support vector 
regression model (ε-SVR) is used with the radial basis function kernel [8]. 

Artificial neural networks have been arguably the hottest areas of research in the field 
of machine learning during the last few decades. In this study, a simple (dense) neural 
network was experimented with using the Keras framework [10]. The number and size of 
layers, solver algorithm, dropout, and learning rate were the hyperparameters used in this 
study.  

3 RESULTS 

The whole pipeline has been run for each algorithm, and the results are shown and 
evaluated in this section. In this study, the infinite multiplication factor (𝑘𝑖𝑛𝑓) was used as an 
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example of the fitted target value. Its value ranges between 0.96 and 1.41 in the sample 
dataset, and the values presented are absolute errors. However, various group constants 
can be fitted the same way. 

It is important to keep in mind that some algorithm’s performance is not deterministic, it 
can vary with each run. This comes from several factors, including the randomness of the 
Bayesian search in hyperparameter optimization, the inherent randomness of some of the 
algorithms (e.g., Random Forest), and the dataset splitting (in those cases where it is part of 
the pipeline). Initialization of fitting weights is also a source of stochasticity, specifically in 
neural networks. Thus, the results will be presented as a mean of error values of several (6-
7) runs with their sample standard deviation using Bessel’s correction. 

 

Figure 2. Mean and corrected sample standard deviation of root mean square error at 
the fitting of kinf, shown for different models 

One can make several observations by comparing the average training and test errors 
for each method (Figure 2): 

Random Forest has the largest (0.00974 ± 0.00026) test error. The training error is 
substantially smaller (0.00301 ± 0.00007), which means the algorithm was not able to 
generalize well to new data. Random Forest is a widely used algorithm for large and 
complex, noisy datasets; however, in this problem, the dataset is neither large enough (that 
is, the distance between data points is large) nor sufficiently complex to justify the usage of 
this algorithm. 

The artificial neural network also has notable errors for both training (0.00555 ± 
0.00171) and test (0.00528 ± 0.00160) datasets. The two errors' similar magnitude implies 
this is not a case of overfitting but simply the model's inability to approximate this problem 
better. While deep neural networks are incredibly useful and widely used tools that can 
outperform all other methods for complex and nonlinear machine learning tasks, this problem 
does not seem to be where these algorithms can shine. However, neural networks are an 
extensive topic, so other subtypes, as well as feature engineering, further hyperparameters, 
and training techniques, should be considered before declaring this algorithm family 
suboptimal for our problem. 

Support vector machines are widely used for problems of similar size and complexity to 
our task. Their test error (0.00291 ± 0.00002) is substantially better than the two already 
mentioned algorithms, it was not able to outperform a simple linear interpolation (0.00201) for 
our case, however. This algorithm should also be considered with other kernels and 
hyperparameters before we deem it suboptimal. 

Among regression algorithms, simple polynomial regression (not shown) was able to 
outperform the linear interpolation slightly (with a test error of 0.00197). The best-performing 
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algorithm was the modified CORK regression, the performance of which was 0.00073 ± 
0.00001, while the training error was 0.00047 ± 0.00001, which is somewhat, but not 
drastically smaller than the test error, so overfitting was successfully avoided for this method. 

The best (completely perfect) performance for the training dataset was reached by 
linear interpolation since this algorithm fits perfectly on training points by definition.  

 

Figure 3. Fitting of each method on points along a BU-dependent line in the 5-
dimensional feature space. The fittings at the beginning are shown enlarged in the bottom 

left corner. 

 In Figure 3, the fits of each algorithm are shown in the function of burnup. It is 
important to note that the plotted points (shown with ‘x’ markers) are part of neither the 
training nor the test dataset. Similar plots have been made along all dimensions, but only 
burnup dependence is shown here as it is the most nonlinear of all. Since points in both 
training, validation, and test datasets are randomly distributed along all dimensions except 
for burnup, and burnup points are also irregularly spaced, another set of points was 
generated where just one feature is changed, while the rest is fixed on a base value. This 4 th 
dataset is referred to as the plotting dataset and is shown in the figure with x markers. The 
random forest approximates the least credibly. As seen in the figure, it has a step-like 
prediction curve when projected in one dimension. The neural network model also has larger 
errors, especially at the two ends of the curve. SVM cannot catch the initial sharp nonlinear 
changes in the multiplication factor. Linear interpolation can not easily be distinguished from 
the CORK regressor, the performance of these two methods can only be compared by the 
errors in Figure 2, for which the CORK regressor performs better.  

4 CONCLUSION 

In this study, a cross-section fitting and testing code package was implemented, and 
the various fitting algorithms were compared with the newly developed CORK regressor. It 
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was found that the CORK regressor has the best performance on the used VVER-1200 
assembly model with an average RMS error of 0.00073 for the fitted 𝑘𝑖𝑛𝑓. The method’s 

stable performance is demonstrated by the estimated standard deviation of the error of ~1%. 
Random forest was found to be ineffective for this problem, while other methods showed 
suboptimal performance. However, running the pipeline with outputs from other assemblies 
and fitting different group constants might have slightly different conclusions. 

The topic of neural networks is vast, more complex neural network-based models 
need to be studied, which can be the goal of further research. Other further directions of this 
research include fitting Monte Carlo-generated group constants and investigating the effect 
of stochastic errors of the data points. Finally, other features, such as concentrations of 
reactor poison isotopes (Xe-135 and Sm-149), can also be included in the fitting 
methodology. 
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