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ABSTRACT

We present the results of feasibility tests on using Low-Gain Avalanche diodes (LGAD)
for fast neutron fluence monitoring. The LGAD’s, where boron acceptor doping in the gain layer
is deactivated by incident neutrons, changing their electrical characteristics. Their character-
ization of response to neutrons is given in terms of the fluence, equivalent to the fluence of
neutrons at energy of 1MeV: ϕeq(1MeV), and is characterized by a response function. This
functions has the value close to 1 for neutron energies E > 100 keV, and orders of magnitude
lower at lower energies. An assembly of LGAD chips was irradiated in the Jožef Stefan Insti-
tute TRIGA reactor. The irradiation experiment was closely reproduced by Monte Carlo particle
transport simulations, addressing some of the experimental uncertainties. We show that agree-
ment between LGAD’s measured response and calculated fast neutron fluence to be within the
uncertainties. This highlights the possibility of using LGADs as an on-line fast neutron fluence
monitor during various sample irradiaitons.

1 INTRODUCTION

In recent years, the increased sensitivity of the silicon devices to the effects of radiation
lead to the discussion, whether they can be used to monitor the neutron fluence dispersion dur-
ing neutron irradiation testing of detectors and read-out electronics [1] for High energy Physics
experiments. Low-Gain Avalanche Diodes (LGADs) in particular seem to be a suitable can-
didate for precise fluence mapping. These are n-in-p silicon sensors, which have a highly p-
doped region close to the n-electrode, called gain implant. These create a local enhancement
of the electric field responsible for the charge carrier multiplication [2]. The difference between
a traditional diode and LGAD is schematically displayed in Figure 2. The effect referred to as
acceptor removal [3] is well characterized and tested [4] and occurs due to neutron interactions
with boron dopants, deactivating it’s effect on the gain layer by incident neutrons. Their small
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size and sensitivity makes them suitable for neutron fluence dispersion measurements. Neu-
trons at different energies cause different amount of damage to the bulk silicon i.e. the damage
function is dependent on the energy of an incident neutron. A neutron damage equivalence is
commonly used in high energy physics field, where the incident neutron fluence ϕ is scaled to
an equivalent fluence ϕeq(1MeV) via equivalence factors, as denoted in Figure 1. Since these
factors are of the order of ≈ 1 in the energy range above 100 keV and orders of magnitude
below, the ϕeq(1MeV) is a good indicator of neutron fluence with energies above 100 keV.
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Figure 1: Scaling factors for assessing ϕeq(1MeV) [1].

Figure 2: Schematic cross section of traditional diode and LGAD. Adopted from [4].

The paper gives an insight on the LGAD operation, experimental testing of an assembly
of LGADs in the F19 irradiation channel of the Jožef Stefan Institute (JSI) TRIGA reactor and
comparison with results obtained by Monte Carlo particle transport simulations, including the
self-shielding and uncertainties due to the unknown orientation of the LGADs assembly during
the experiment.

2 LOW GAIN AVALANCHE DIODES AND EXPERIMENTAL ASSEMBLY

Compared to standard silicon diodes, LGADs have a moderate internal gain, thanks to the
addition of a highly p-doped region close to the n-electrode, which generates a very high electric
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field region, usually in the form of boron acceptor. The determination of the active acceptor
concentration is performed via a capacitance-voltage (C-V) measurement. The bias voltage
at which the gain layer is depleted corresponds to a significant drop in measured capacitance
is commonly known as the knee, and indicated as VGL. In practice a fixed capacitance value
in close proximity of the knee is selected as an indicator for VGL. The effective concentration
of the acceptors NA in the gain layer decreases due to neutron irradiation introducing defects
in silicon, which effectively decreases it’s effect as a dopant, thus lowering the required bias
voltage VGL to obtain the same capacitance, as described by Equation 1, where c denotes a
constant characterized by the likelihood of neutron deactivation of boron as acceptor, and Φ the
incident neutron fluence.

VGL(Φ)

VGL(0)
=

NA(Φ)

NA(0)
= e−cΦ (1)

In the present work, LGAD chip arrays of 7.7mm×7.7mm package consisting of 5×5 individual
diodes (Figure 3a) from wafer 1 of the FKB USFD2 production batch [5] were used for fast
neutron fluence mapping. An assembly of 8 LGAD chips (Figure 3b) mounted on a FR4 board
and covered by Capton tape was constructed. The assembly as irradiated inside a plastic
container in the F19 channel of the JSI TRIGA reactor at full power of 250 kW. The goal was to
irradiate these samples with a 1MeV fluence equivalent ϕeq(1MeV) up to 1.5× 1015 cm−2. The
time to achieve this was estimated as 926 s.
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(a) 5× 5 LGAD array on a single chip.

(b) Assembly of the 8 LGAD
chips on FR4 board, wrapped
in Capton tape.

Figure 3: LGAD arrays and assembly for irradiaiton in the JSI TRIGA reactor.

3 JSI TRIGA REACTOR

The JSI TRIGA reactor is a pool type research reactor (Figure 4a) with maximum steady
state thermal power of 250 kW. The core consists of 91 positions, 4 of which are filled with control
rods, while the rest can be either empty, filled with fuel elements or irradiation positions (Figure
5 left), which can be loaded with samples the reactor platform or via a pneumatic post system.
The reactor is commonly utilized for study of radiation tolerance and irradiation of electronic
components used in High energy particle physics and is a reference neutron irradiation facility
for CERN [1], mainly inside the reactor core, in the F19 position. The reactor core configuration
used during the irradiation of the LGAD chip assembly is displayed in Figure 4b. The LGAD chip
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(a) 3D model of the JSI TRIGA reactor and some
ex-core irradiation positions.
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Figure 4: Schematic view of TRIGA reactor and its core.

assembly was inserted inside a polyethylene container and lowered into the irradiation position
from the reactor platform. The axial orientation of the chip assembly could not be controlled, as
schematically shown in Figure 5 on the right.
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Figure 5: Schematic of TRIGA fuel element and an irradiation channel (left) and the schematic
of the LGAD chip assembly during irradiation (right).
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4 EXPERIMENT

The C-V characterization of individual LGAD diodes was performed prior to the irradiation
using a Keysight B1505A Power Device Analyzer. A high voltage source-monitor unit was used
together with a multi-frequency capacitance measurement unit. The frequency of the AC signal
was set to 1 kHz with a voltage amplitude of 50mV. A parallel capacitor-resistor model was used
to obtain the capacitance value. The probe station chuck was negatively biased, and one probe
needle was at 0V moved over the 25 pads of each LGAD array. An additional probe needle
at 0V was used to power the guard ring and collect the dark current from the sensor periphery
and reduce the noise. The constant c from Equation 1 is assumed to be constant for all LGADs
due to a low initial doping variation below 2% [6]. The fixed capacitance value of 150pF close
to the knee was selected.
After the pre-irradiation measurement of VGL, the reactor was started to the full reactor power
of 250 kW and the LGAD chip assembly was inserted into the F19 channel for 926 s in order
accumulate ϕeq(1MeV) = 1.5× 1015 cm−2. Similar C-V measurement was performed after the
irradiation. The difference between C-V curves prior and after the irradiation can be observed
in Figure 6.
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Figure 6: C-V characteristics measurement of a single LGAD chip array prior (top) and after the
irradiation (bottom).
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5 EXPERIMENT MODELING

A Monte Carlo particle transport calculation was performed to support the irradiation of
the LGAD chip assembly. The simulations were performed using the MCNP v6.1 code [7] and
ENDF/B VII.0 nuclear data libraries [8]. A detailed model of the JSI TRIGA reactor was used,
which has been validated by a number of experiments [9, 10, 11, 12], and modified accordingly,
to reflect the experimental setup during the irradiation. Since the axial rotation of the LGAD
chip assembly was unknown during the irradiation, two distinct orientations of the assembly
were simulated. The ray-traced model of the JSI TRIGA reactor MCNP model and the two
distinct orientations of the LGAD assembly are displayed in Figure 7. Neutron fluence with
neutron energy above 100 keV were tallied over each individual chip, as well as over individual
diodes on a chip. A mesh was superimposed over the entire assembly to help visualise the
changes in the fast (En > 100 keV) neutron field, as displayed in Figure 8.
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Figure 7: Ray-traced MCNP model of the JSI TRIGA reactor, with two different orientations of
the LGAD chip assembly.

6 EXPERIMENT VS. MODEL

The experimental results were obtained from measurements of VGL difference. Aver-
age ϕeq(1MeV) over a single LGAD chip array was calculated, with ϕeq(1MeV) from individual
diodes serving as an estimate of dispersion. Similar technique was used for assessment of
uncertainty from calculations, combined with the statistical uncertainty of the Monte Carlo par-
ticle transport simulations. Although the axial orientation of the assembly was unknown, the
results were closely matched to those from the simulations in the perpendicular orientation.
The comparison of experimentally obtained ϕeq(1MeV) against the calculated fast neutron flux
ϕ(En > 100 keV) can be observed in Figure 9. One can observe that the two results are gen-
erally in agreement within the uncertainty except for Chip 2, which is very encouraging, con-
sidering two different quantities are compares and that the orientation of the LGAD assembly
during the irradiation was unknown. This highlights the possibility of using such detectors as an
on-line fast neutron flux monitor.
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Oriented diagonally wrt. reactor core centre
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Figure 8: Fast neutron flux over the LGAD chip assembly inside the F19 channel at two axial
orientations. The arrow denoted the direction towards the core centre.
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Figure 9: Comparison of measured ϕeq(1MeV) against the calculated ϕ(E > 100 keV) in each
individual LGAD assembly chip. Values obtained from single diodes used for uncertainty esti-
mate. In case of simulations 1σ statistical uncertainty is added.

7 CONCLUSIONS AND OUTLOOKS

The initial fesibility tests on using LGADs as fast neutron fluence monitors have been
carried out at the JSI TRIGA reactor. The experiment was reproduced in detail using Monte
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Carlo particle transport calculations. Comparison of measured responses to ϕeq(1MeV) and
calculations of fast neutron fluence ϕ(E > 100 keV) are generally in agreement within the un-
certainty, even though the axial orientation of the LGAD chip assembly during the experiment
was unknown and was estimated from simulations. This highlights the possibility of using LGAD
sensor as on-line fast neutron flux monitors, especially if efforts are made to fix their axial ori-
entation during irradiations.
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