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ABSTRACT

The harsh environment of Light Water Reactors (LWR) deteriorates the mechanical prop-
erties of internal structures within the reactor. Austenitic stainless steels are among the best
structural materials to operate in the LWR environment due to their excellent mechanical prop-
erties, and high resistance to stress-corrosion cracking and irradiation damage. However, ex-
tended use of these steels may give rise to a unique deformation mode characterized by lo-
calized strain in terms of slip and kink bands (also known as clear channels). Such strain
localization may lead to a premature strength reduction of the internal components.

The Fast Fourier Transform (FFT) method for the homogenization of composites under
periodic boundary conditions is based on the discretized Lippmann-Schwinger equation and
Fourier series, and was first developed in 1998. Since then, this method has been extended
to polarization-based methods, Krylov approaches, Fourier–Galerkin, and displacement-based
methods and pushed beyond a variety of studies containing multi-scale modeling, multi-physics
problem, crystal plasticity, etc.

This paper proposes a novel FFT algorithm in the framework of crystal plasticity in terms of
modified Green operator and Anderson acceleration to acquire the converged displacement and
stress fields of irradiated polycrystals under tensile loading. Furthermore, the algorithm employs
special indicators to identify regions of strain localization within the polycrystalline aggregate,
and distinguishes kink bands from slip bands by carefully analyzing crystal lattice rotations.

1 INTRODUCTION

Nuclear power, a promising and environmentally friendly energy source, has nonetheless
faced challenges. These have manifested as the revelation of potential vulnerabilities in the
structural integrity of reactor components. Addressing these concerns requires a robust un-
derstanding of material science and fracture mechanics, pivotal elements that hold the key to
enhancing structural safety and ensuring a secure trajectory for the future of nuclear technology.

308.1



308.2

Austenitic stainless steel alloys find extensive application in the design of nuclear reac-
tor internals. These alloys are prone to the development of defects in their microstructure due
to the presence of neutrons and subsequent ballistic interactions with steel atoms, resulting in
diminished strength, ductility, and altered fracture behavior compared to typical (unirradiated)
conditions. Previous experimental findings have shown that irradiation leads to increased het-
erogeneity in the deformation mode, resulting in intense deformation within narrow channels [1].
These channels, widely recognized as ”clear channels”, emerge due to the high density of dislo-
cation gliding in these regions, effectively sweeping away hardening defects. This phenomenon
results in material softening, reduced alloy lifespan, and eventual failure. Clear channels are
commonly categorized into two types: slip bands (aligned parallel to slip planes) and kink bands
(rotated in relation to slip planes). This study endeavors to establish a systematic framework
for distinguishing between various types of clear channels.

Fast Fourier transform (FFT) homogenization method operates by resolving the Cauchy
equilibrium equation of motion through the convolution between the source of heterogeneity and
the Green operator. The inherent periodicity of tensors, along with advantages such as reduced
memory allocation, direct utilization of microstructural images without the need for meshing, and
a lower computational burden compared to the finite element method, render the FFT method
a formidable contender in this domain.

In this paper, the theoretical background of crystal plasticity and Lippmann-Schwinger
equation is outlined in Section 2. The pseudo code of the FFT-based method is described
in Section 3. The results are discussed in Section 4 in terms of the macroscopic mechanical
behavior of austenitic stainless steel and corresponding localization band detection. Section 5
provides the conclusions. The notation used in this paper is outlined in Appendix A.1.

2 CRYSTAL PLASTICITY AND LIPPMANN-SCHWINGER EQUATION

On a microscale, the atoms of austenitic stainless steel alloys periodically arrange into
Face Centered Cubic crystal lattice. Within this structure, dislocations glide along 12 specific
pathways known as slip systems indicated byMiller indices as

{
111
}
⟨110⟩. Themechanical the-

ory of crystal deformation is based on the concept that dislocations initiate their motion along
active slip systems, succeeded by the subsequent overlay of elastic distortion. This study at-
tempts to simulate the elasto-viscoplastic behavior of irradiated polycrystals on the microscale
that have been implemented in the Matlab code [2].

In the small strain framework of crystal plasticity, the total deformation gradient additively
decomposes into the elastic and plastic parts of the displacement gradient tensor (Eqs. (1),
(2)) [3]. This leads to a set of corresponding constitutive equations1 encompassing linear elas-
tic behavior between stresses (Eq. (4)) and strains (Eq. (3)), resolved shear stress (Eq. (5)),
plastic flow rule (Eq. (6)), and critical resolved shear stress (Eq. (7)). Notably, the critical re-
solved shear stress incorporates an exponential softening, which captures the effects of both
irradiation-induced hardening and dislocation glide-driven defect removal [3].

F
∼
= 1

∼
+∇ue +∇up (1)

F
∼
e = 1

∼
+∇ue (2)

ε
∼
e = sym(∇ue) = 1

2(∇ue +∇ue
T
) (3)

σ
∼
= Λ

≈
: ε
∼
e (4)

τ s = σ
∼
: sym(µ

∼
s) (5)

1Details of time integration are given in Appendix A.2.
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γ̇s = sign(τ s)
〈 ∣∣∣τ s∣∣∣−τ scr

k

〉n
(6)

τ scr = τ s0 −∆τ
[
1− exp

(
−γscum

γs0

)]
+ Hsγscum (7)

γscum =

∫ t

0

∣∣γ̇s∣∣ dt (8)

The Lippmann-Schwinger equation [4] is derived by the additive decomposition of the
total displacement gradient tensor into the fluctuation and average terms, assuming the fluctu-
ation term is periodic and the traction vector is anti-periodic on the boundary of material (∂B).
Additionally, an auxiliary homogeneous isotropic linear elastic material with the elasticity tensor
Λ
≈
h is introduced to define the polarization tensor.

∇utot(x) = ∇u+∇u⋆(x) ∀x ∈ B, ∇u⋆#∂B
σ
∼
(x) = Λ

≈
(x) : sym(∇ue) ∀x ∈ B, σ

∼
.n− #∂B

τ
∼
(x) = σ

∼
(x)− Λ

≈
h : sym(∇utot(x)) ∀x ∈ B

div
(
σ
∼
(x)
)
= 0 ∀x ∈ B

(9)

The solution in real space and Fourier space is obtained by applying a Green operator (Γ
≈
M):

Real space: ∇utot(x) = −Γ
≈
M ∗ τ

∼
(x) (10)

Fourier space:

∇̂u
tot
(ξ) = −Γ̂

≈

M
(ξ) : τ̂

∼
(ξ) ∀ξ ̸= 0

∇̂u
tot
(0) = ∇u

(11)

A significant advantage of computing in the Fourier space is that the convolution integral
operator in real space (Eq. (10)) simplifies into double contraction in Fourier space (Eq. (11)),
which results in reduced computational cost.

2.1 Localization band detection

The aforementioned crystal plasticity framework presented in the previous section en-
ables us to distinguish the plastic strain localization regions in the material by introducing new
variables as effective cumulative plastic deformation, p, and rotation angle θ2[3].

p =

∫ t

0

√∑
s

γ̇sµ
∼
s :
∑
s

γ̇sµ
∼
s dt (12)

θ = arccos
(
1
2

(
tr
[
R
∼
e
]
− 1
))

(13)

Two Heaviside functions, defined by thresholds based on the mean values (p̄, θ̄) and user-
defined factors (ΦL, ΦR), have been formulated to detect regions of slip localization and high
lattice rotation.

L(X) = H
(
p(X)− p̄ΦL

)
(14)

R(X) = H
(
θ(X)− θ̄ΦR

)
(15)

The following indicator functions are considered to explicitly detect slip and kink bands,

K(X) = L(X)×R(X) (16)
S(X) = L(X)−K(X) (17)

2The rotation tensor is obtained by polar decomposition of the elastic part of deformation gradient (F
∼
e = R

∼
e.U

∼
e).
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In this formulation, localization bands are recognized as kink bands (high strain localization
and high lattice rotation) if K(X) = 1, and slip bands (high strain localization and small lattice
rotation) if S(X) = 1.

Table 1: Pseudo code of the FFT-Algorithm

3 FFT-BASED COMPUTATIONAL ALGORITHM

The process of finding the displacement gradient involves employing a fixed point (Picart)
iteration that converges linearly to the desired solution. To expedite this process, (i) a specific
variant of Anderson acceleration, known as Altered 2− δ method [5], and (ii) a modified Green
operator (Eq. (18)) are established to enhance the accuracy of local field resolution [6].

Γ̂
≈
M = f⊗

[
f.Λ
≈
h.f′
]−1

⊗ f′ (18)
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fj = i sin
(
ξj
)

(19)
f′j = ifj (20)

ξi =
2πmi

Li
, mi = 1− (Ni/2), 2− (Ni/2), ..., 0, ..., (Ni/2)− 1, (Ni/2) (21)

The overall structure of the proposed FFT-Algorithm is given in Table 1.

4 RESULTS

The FFT-based homogenization method is used to simulate the tensile loading of two
different polycrystalline models (Voronoi tessellation), a 5-grain aggregate discretized by 643

voxels, and a 16-grain aggregate discretized by 903 voxels [7]. Tensile loading is applied by
assigning mixed boundary conditions. In this respect, the displacement gradient tensor is pre-
scribed on the Z-direction to simulate a strain rate of 10−5 s-1 and a zero mean value for Cauchy
stress tensor is specified for other directions. The material properties used in the simulations
are given in Table 2.

Table 2: Two sets of material properties

Figure 1 represents the calculated tensile responses of both aggregates for two sets of
material parameters. A typical elasto-viscoplastic behavior is observed with identical elastic
responses and common yield stress. Note that the observed macroscopic softening (blue and
violet curves in Fig. 1) is typical for irradiated austenitic stainless steel.
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Figure 1: Macroscopic tensile curves for different aggregate sizes and material properties.

Figure 2 demonstrates the distribution of the total cumulative shear strain (
∑

s γ
s
cum) and

slip and kink band distributions within the 16-grain aggregatemodel at final deformation (∇uZZ =
0.02). The results show that plastic deformation due to dislocations glide is localized within
narrow bands (usually only one or two voxels wide). This kind of plastic localization, appear-
ing at relatively small tensile strain (∼ 2%), has been also observed experimentally in irradi-
ated austenitic stainless steels [1]. It is believed that the interaction of such localization bands
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Figure 2: 16-grain aggregate (with 903 voxels) at ∇uZZ = 0.02.

Left: slip bands (black lines) and kink bands (white lines). Right: total cumulative shear strain (
∑

s γ
s
cum)

with grain boundaries is crucial for the initiation of micro cracks when the material is addition-
ally exposed to the corrosive environment (e.g., Irradiation-Assisted Stress Corrosion Cracking
(IASCC) [8]). Moreover, the visualization of individual grains allows us to observe different qual-
itative aspects of the localization behavior. Namely, the localization bands may stop at grain
boundaries, or they may extend across several grains (with a possible slip/kink band type tran-
sition), or they can disappear or change a direction within a grain. It also seems that many of the
localization bands intersect (or pass very closely to) the grain triple points. This may indicate
that triple points are indeed the initiators of the localization bands.

5 CONCLUSIONS

A novel FFT-based homogenization method in the framework of crystal plasticity has been
proposed and computationally implemented in the Matlab software. When applied to polycrys-
talline models of irradiated austenitic stainless steel, the method has correctly predicted the
macroscopic softening response, which microscopically corresponds to the formation of so-
called clear channels. These localization bands have been distinguished into slip and kink
bands, depending on their inclination with respect to slip planes. The simulations have addi-
tionally revealed that the formation of bands is potentially influenced by the proximity to grains
triple points.
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APPENDIX

A.1 Notation

The first-order (vector), second-order, and fourth-order tensors are denoted as u, A
∼
, B

≈
.

The superscripts, tot, e, p, T, ˙ ,⋆, and s, respectively correspond to the total, elastic, plastic,
transpose, time derivative, fluctuation part of tensor field, and variable associated to the slip
system. Also, the bar over the tensor field is the spatial mean value over the whole material.

ᾱ =

∑Ntot
i=1 αi

Ntot
(A.1)

The dot and double dot contractions are denoted as following indices notation (where Einstein
summation convention is used).

u.v = uivi (A.2)
(A
≈
: B
≈
)ijmn = AijklBklmn (A.3)

The fast Fourier transform (FFT ) and inverse of fast Fourier transform (IFFT ) of a tensor are
defined as (in discrete Fourier transform notations),

B̂
∼
(ξ1, ξ2, ξ3) =FFT

(
B
∼

)
=

1
Ntot

N1−1∑
x1=0

N2−1∑
x2=0

N3−1∑
x3=0

B
∼
(x1, x2, x3) exp

(
−2πi

(
ξ1x1

N1
+ ξ2x2

N2
+ ξ3x3

N3

))
(A.4)

B
∼
(x1, x2, x3) =IFFT

(
B̂
∼

)
=

N1−1∑
ξ1=0

N2−1∑
ξ2=0

N3−1∑
ξ3=0

B̂
∼
(ξ1, ξ2, ξ3) exp

(
2πi
(
ξ1x1

N1
+ ξ2x2

N2
+ ξ3x3

N3

))
(A.5)
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Table 3: Symbols and notation

ε
∼
tot Total imposing linear strain tensor σ

∼
Cauchy stress tensor

Λ
≈

Elasticity tensor τ s Resolved shear stress
ms Slip direction ns normal to slip plan
⊗ Tensor product µ

∼

s = ms ⊗ ns

sym Symmetric part of tensor γs Shear strain
γ̇s Shear strain rate τs

cr Critical resolved shear stress
exp Exponential function γs

cum Cumulative shear strain
t Time sign sign function
x Position of material point B Whole material
∂B Boundary of material n Normal vector
# Periodic −# Anti-periodic
div Divergence operator ∗ Convolution integral
τ
∼

Polarization tensor field I
≈
(1) = 1

2
(δikδjl + δilδjk)

Λ
≈

h Homogeneous isotropic elasticity tensor ξ Frequency in Fourier space
∀ For all δij Kronecker delta
∇u Displacement gradient tensor 1

∼
Second order identity tensor

⟨⟩ Macaulay brackets Γ
≈
M Modified Green operator

p Effective cumulative plastic deformation f Modified frequency vector in Fourier space
θ Rotation angel arccos Inverse of cos
tr Trace operator L

∼
p Plastic part of velocity gradient tensor

H Heaviside step function U
∼
e Stretch tensor

R
∼

Rotation tensor Ntot Total number of voxels
Li Length of material on i-direction i Imaginary number

A.2 Time integration

The time integration algorithm consists of finding the increments of state variables (∆vi+1)
by evaluating residual and Jacobian (J i, Ri) of the respected variables at the previous iteration
and updating the state variables, vi+1, until reaching the tolerance.{

J i(vi).∆vi+1 = −Ri(vi)

vi+1 = vi +∆vi+1
(A.6)

We assume that the state variables at the previous time step and the total strain field at the
current time step are known. The residual and their partial derivatives are derived as:

Rε
∼
e = ∆ε

∼
e + ε

∼
e(tn)− ε

∼
tot(tn +∆t) + ε

∼
p(tn) +

∑
s

∆γssym(µ
∼
s) (A.7)

Rγs = ∆γs −∆t sign(τ s)
〈
|τ s|−τ scr

k

〉n
(A.8)

∂Rε
∼
e

∂∆ε
∼
e = I

≈
(1) (A.9)

∂Rε
∼
e

∂∆γj
= sym

(
µ
∼
j) (A.10)

∂Rγs

∂∆ε
∼
e = −∆tnk

〈
|τ s|−τ scr

k

〉n-1
sym

(
µ
∼
j)

: Λ
≈

(A.11)

∂Rγs

∂∆γs
= δsj

(
1 + ∆t sign (τ sγ j) n

k

〈
|τ s|−τ scr

k

〉n-1 [
Hs −

∆τsexp
(
−γscum

γs0

)
γs0

])
(A.12)
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