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ABSTRACT 

 For various applications a reactor power history dataset might be needed. One example 

is the determination (calculation) of isotopic composition of spent nuclear fuel. Sometimes we 

need data with great detail (i.e. raw input data), sometimes with fewer detail. This is why the 

Cycle Power History Python script was developed. It allows the user to specify the number of 

intervals with which the input data is to be approximated. Furthermore, a few different methods 

are available for automatic plateau- and step-change detection. Among these, a relatively simple 

iterative interval merging – based on distance from the average of two neighbouring values – 

has proven to be both accurate and robust. This article explains the methodology, and provides 

both quantitative and qualitative assessment of the results. 

1 INTRODUCTION 

When calculating the isotopic composition of a spent nuclear fuel, we usually treat the 

reactor as zero-dimensional point or one-dimensional cylinder of infinite height (i.e. where the 

fuel assemblies are points subjected to different neutron fluence, depending on their radial 

position in the reactor core). In both cases the main input parameters are time and power at 

which the fuel was depleting (“burning”) [1]. Although the amount of reactor power history 

details reportedly does not change the resulting isotopic composition by much [2], [3], this 

project was born out of curiosity to calculate this effect on a real-life case. 

Using the ORIGAMI Automator tool of the SCALE package [4], [5] to perform fuel 

depletion calculation of several fuel assemblies (FAs) with detailed power history proved to be 

unsuccessful. The exact cause remains unknown, but our investigation suggests that there might 

be an internal constraint on how many depletion intervals can be used for any single FA. This 

number is approximately hundred. Since some FAs are used in nuclear reactor for up to 5 times, 

a single cycle power history should be given in � 25 intervals. Therefore, our problem arises. 

It can be defined as approximating a detailed timeseries data with � coarse sectors of constant 

values (�����		��	�  10� ≫ � � 3). 

The problem itself is far from being new. Moreover, since it is quite general, there is a 

multitude of different scientific terms that might all describe it adequately: automatic step-

change detection; plateau detection; edge detection; binary segmentation; down-sampling; 

binning with non-equal bin widths; change-point methods; … In various scientific fields there 

even exists ready-made solutions, e.g. Refs. [6]-[8] in DNA-related studies. However, the DNA 

problem is slightly different in that there can only be discrete plateaus, whereas reactor power 

history (input data) also includes (linear) power-change ramps. All these will nevertheless be 

represented as plateaus at some constant power. 
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2 METHOD 

2.1 Definitions and visualisation of the problem 

The problem is characterised by contradictory requests to average-out relatively small but 

fast fluctuations and to retain detail in important transients, such as reactor trip. In other words, 

we need to capture both slow and fast changes (see Figure 1). As follows from the intended 

application – i.e. using coarse power history as depletion intervals to compute spent fuel 

isotopic composition – possible suitable criteria could be in units of energy released in a certain 

interval, ∆� � �∆�. 

 
Figure 1: Typical features of a reactor fuel cycle history: a) startup and power ascension 

programme; b) possible reactor trip; and c) power coastdown and reactor shutdown. Mind the 

time scale changes. Both original input data and coarse resampled output data are shown. 

Because the original input intervals can be of varying lengths, we need to incorporate 

weights into our equations. Note that throughout this paper, symbols for power, �, and for a 

general ordinate axis variable, �, will be used interchangeably to retain more general formula 

looks. Let us first declare notation convention for a simple weighted mean, 

�̅ � ���,…,� !!!!!!!!! � �̅|#$�� � ∑ &'()(*(+,∑ &'(*(+,  , (1) 

where ∆�# is the --th interval duration. Weighted root mean squared error (RMSE) is a scalar 

quantity which can be defined either for deviation of a single dataset from its mean value, or 

for deviation between two datasets. We will use them both, as appropriate: 

wRMSE� � 3∑ ∆'(�)̅4)( 5*(+,∑ ∆'(*(+,   , wRMSE6 � 7∑ ∆'(89(:;<=49(>?@AB=C5*(+, ∑ ∆'(*(+,  . (2) 

Of course, the second formula will only work if both fine and coarse datasets have same number 

of intervals, � � �����	. This is achieved by padding the coarse dataset, i.e. solely for 

comparison purposes temporary restoring all initial fine intervals and populating them by the 

average values of each corresponding coarse interval. 

2.2 Implementation 

The Power Cycle History script is coded in Python programming language and is 

designed for interactive execution in an (Anaconda) command prompt. Besides actual intervals 

determination and inevitable parsing of input arguments, the program also does the following: 
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• checks the input data for possible inconsistencies or bad measurements (available 

if two complementary reactor power datasets are available, such as calorimetric 

reactor power and neutron flux); 

• automatically detects the starting and ending point of the fuel cycle (based on 

supplied official start and end timestamps [it is generally recommended to ensure 

there are a few extra measurements before start and after the end of a fuel cycle]); 

• calculates the total released energy and (referring again to the official records) 

normalises the output accordingly; 

• displays the results and writes them onto a file in the format of ORIGAMI 

Automator. 

2.3 Possible Methods 

For automatic detection of interval boundaries, one could use several criteria. Of course, 

some are better than other which can be assessed qualitatively by their robustness to input data 

peculiarities, and quantitatively by RMSE deviation from original data (see Eq. 2 and Sec. 3, 

Results). Some criteria/methods with comments on their applicability to our field of usage are 

listed in Table 1. For the sake of simplicity, the input data is assumed to be in units of percent 

of reactor Rated Thermal Power (% RTP). 

 

Table 1: Possible criteria and/or methods with remarks on their applicability. 

No. Criteria based on Unit Comment 

1 Absolute magnitude 

of signal change 

% RTP Key parameter: tolerance on the magnitude. 

2 Signal change rate % RTP/h Discriminate the lower 99-th percentile of 

signal change rate absolute values. 

3 Interval change rate 

(frequency) 

interval/h Not discerning important intervals from 

totally omittable ones. 

4 Released energy EPFD Merge neighbouring intervals, starting from 

those with the most similar power level (see 

Section 2.4). 

5 Cumulative RMSE % RTP Sum of forward and backward cumulative 

RMSE has a minimum at step-change. 

6 Rolling average / Signal processing method. Not applicable as 

it smudges sharp corners at reactor trip. 

7 FFT + low/high 

pass filter 

/ Signal processing method. Not applicable as 

we need to capture both slow and fast 

changes. Generality is difficult to achieve. 

 

Among these criteria, No. 3, 6 and 7 are not implemented, No. 1 and 2 are implemented 

but their usage is discouraged (i.e. they are neither optimal nor robust but are retained for 

comparison), while No. 4 and 5 are implemented and their performance is discussed more 

deeply in the following subsections. 
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2.4 Interval Merging Methodology 

Interval merging based on the released energy is in fact a very simple method, as 

illustrated on Figure 2. 

 
Figure 2: Interval merging scheme. Both shadowed areas correspond to same amount of 

energy, ∆�#. The bigger this ∆�#, more important is to retain the interval starting at �#. 
For each input interval - it calculates its importance, ∆�#, i.e. the amount of surface (energy) 

that would “shift” between the interval in question (-) and its preceding interval (- D 1), should 

the two be merged: 

∆E� � |�# D �#4�| E∆'(	⋅	∆'(G,∆'(H∆'(G,	I . (3) 

After calculating the importance of all initial intervals, we can set a cut-off value that 

would leave us with the � most important intervals. Off course, as the importance metric is 

calculated for merging of only two adjacent intervals, it has to be used that way, i.e. if the --th 

interval was merged with its predecessor, then (the starting point of) the �- J 1 -th interval must 

be left intact. This means that not all “unimportant” intervals can be merged in one pass –

instead, the process is iterated. Starting with some 1.3 L 10� intervals, it takes about 15 

iterations to get down to � � 25 intervals. With fewer intervals left, each iteration is faster than 

the previous one. 

2.5 Improvements (?) to Interval Merging Method 

A linearly decreasing safety factor may be employed, so that in first ten iterations more 

than � � 25 most important intervals are marked for preservation. The aim is to avoid 

prematurely merging intervals that would later (when some of their neighbours get merged) 

turn out to be important. Seeing it in action this seemed to produce step-changes at more 

appropriate times, however, according to the RMSE deviation between the initial and final 

(coarse) power history profile (Eq. 2), it actually leads to about 5	% (relative) worsening.  

Another idea to improve the RMSE within the same integral merging method is to 

consider the order in which the intervals are merged. (Again, note that we can only merge two 

adjacent intervals at a time.)  Implemented are the following three options: 

a) “simple” – a simple sequential merging, time-ordered progression; 

b) “lower of the two” – same time progression, but among the two neighbouring 

intervals with importance below cut-off, merge the one with lower importance; 
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c) “from lowest” – sort the intervals according to their importance and start merging 

from the lowest importance. Mind the “neighbour rule”! 

Option c) makes the most sense, mathematically, and is used by default. However, its effect 

was overly anticipated – the final RMSE was affected (in fact, worsened) by about 2	% 

(relatively). As it will be seen in results (Table 2), such relative increase still yields satisfactorily 

small absolute RMSE deviation. 

As the total released energy is preserved in any case, thus being acceptable for intended 

use of fuel depletion calculations, it remains open for debate which of the two criteria (visual 

vs. RMSE) should be prioritised. 

 

2.6 STDBA Methodology 

Another option is the cumulative (or expanding) RMSE (method 5 from Table 1). As 

before, we must use weights which complicates the equations, thereby prolonging the 

calculation. The sum of forward and backward cumulative standard deviation (STD before-

after or STDBA) is a vector quantity, computed as: 

STDBAR � 7∑ ∆'(8)�,,…,S !!!!!!!!!!4)(C5T(+, ∑ ∆'(T(+, J 7∑ ∆'(8)�*,…,S !!!!!!!!!!4)(C5T(+* ∑ ∆'(T(+*       for	U ∈ �1, 2, … ,� . (4) 

Here, according to Eq. (1),  ���,…,W !!!!!!!! is a weighted mean from - � 1 up to U, and conversely ���,…,W !!!!!!!!! is a weighted mean from - � � backwards to U. 
STDBA has a local minimum at location of a step-change in input data. As early as in the 

power ascension program after refuelling outage there are several step-changes in the reactor 

power history. The STDBA signal is therefore rather complex (see Figure 3).  

 
Figure 3: The STDBA methodology applied only on a small section reactor power history 

(startup & power ascension program). Note the complexity of the STDBA signal and how 

appropriate locations for new intervals can be extracted from local extremes of both the stdba 

signal and its time derivative. Some more could be added – e.g. see min�diff1  – but that 

would require hand-tuning of parameters for the local extreme search function. 
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Appropriate locations for starting a new power interval can be extracted by searching for local 

minima. Additionally, calculating the STDBA first order derivative, one can see that plateaus 

in the signal start at local maximum, and end at local minimum, which gives us more candidates 

for interval start points. 

Unfortunately, it proved hard to control how many intervals are detected, and to ensure 

good detection throughout the cycle. This could be alleviated by computing the STDBA 

separately for several sub-intervals from input data (e.g. tenths of the total cycle duration), 

effectively increasing the edge-detection resolution. But how does one decide where to start a 

new section? And we would also need a means to compute absolute importance of intervals 

from different sections, so that they can be compared. 

Despite the abovementioned (and other) effort(s), the STDBA approach remains an 

inferior option. Namely, a) it suffers from the fact that the outcome is highly dependent on 

sectioning and parameters for local extrema determination; b) would need help from some other 

method to be fully automatic; c) is computer time intensive (order a��6  as opposed to a��  

for interval merging); and d) cannot capture the linear power ramp at coastdown. The latter 

comes from the fact, that STDBA is designed to capture step-changes (what is more, only one 

step-change at a time). In a way, we were asking too much from this method. Taking all this 

into account, further refinements to the STDBA approach were abandoned. 

3 RESULTS 

In this paper it is not feasible to display a detailed side-by side visual comparison for all 

four implemented methods. In fact, the results for the interval merging method (based on the 

released energy criteria) are already displayed in Figure 1. The principle and difficulties of the 

STDBA approach are depicted in Figure 3. To establish overview, a quantitative comparison 

of the four implemented methods is given in Table 2.  

Table 2: Performance of and comments to the implemented methods. 

No. Criteria based on � RMSE �b9c [s] Quick verdict 

1 Change magnitude 

(tolerance) 

26 0.0062   0.083 Surprisingly good (but 

where is the coastdown?) 

2 Signal change rate 48 0.0065   0.004 Some discrepancy at TRIP 

but: fastest! 

4 Released energy 25 0.0052   7.8 Most accurate; default 

5 Cumulative RMSE 24 0.0230 15.5 Inappropriate (see Sec. 2.6) 

 

Surprisingly, the CPU time needed for each of the methods varies by almost four decades. 

The interval merging method (No.4, released energy criteria) is actually quite slow, as it has to 

do several iterations each with more than a thousand intervals. It is, however, the most accurate 

one in terms of the lowest RMSE L �, where � is the final number of coarse output intervals. 

The magnitude-of-change method (No.1) follows closely. However, with the tolerance hand-

tuned to get to �  25, most of the intervals were “spent” on power ascension programme and 

reactor trip, effectively ignoring coastdown. Rate sensitive method (No.2) captures the 

coastdown better, but produces slightly worse deviation at reactor trip and generally uses too 

many intervals to achieve comparable RMSE value. The many issues of the STDBA method 

(No.5, cumulative RMSE criteria) have been already described in detail. Thus, let us repeat the 

verdict of an over-engineered, inefficient and fundamentally inappropriate approach. 
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Last but not least, one of the main design requests for our resampling script was for user 

to be able to prescribe the number of output coarse intervals. This was in fact achieved only 

with the interval merging method. Relating to the last sentence from Sec. 2.3, it is now clear 

that the only recommended (working) method is the interval merging method, while the other 

three remain accessible for comparison purposes. 

4 CONCLUSION 

In a challenge of finding an optimal way to resample a power reactor history, we 

investigated four methods of varying complexity. Two simplest ones are not versatile enough, 

while one other method is too complicated and in fact fundamentally inappropriate. 

The remaining method – interval merging method – performs flawlessly. It considers 

merging pairs of neighbouring intervals that have similar power level. Off course, interval time 

duration is accounted for. The method is iterative and quite CPU-time expensive, but this is not 

an issue since we only need to perform the task once for each reactor fuel cycle power history. 

The user is to provide the input data in a predetermined format and set the desired number of 

output intervals. Results are obtained in < 20	e, with a normalised RMSE of about 5 L 104f. 
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