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ABSTRACT 

The aging of austenitic stainless steel in the harsh environment of the Light Water Reactor 

is highly sensitive to Stress Corrosion Cracking. The presence of hydrogen in such steels can 

change their microstructure and affect the mobility of dislocations, which may result in the 

deterioration of mechanical properties like embrittlement and strain localization. 

This preliminary study is concerned with the formation of strain localization in the crystal 

plasticity finite element model of the austenitic stainless steel polycrystal due to hydrogen 

concentration. In this framework, polycrystals are generated by Voronoi tessellation topologies 

with zero crystallographic texture. Hydrogen effect is considered in the decomposition of the 

deformation gradient into elastic, hydrogen, and plastic parts. A rate-independent form of 

constitutive equations is derived and implemented numerically in the User MATerial subroutine 

in Abaqus software. Finally, the effect of hydrogen concentrations is studied in a polycrystalline 

aggregate in a series of uniaxial tension simulations. 

1 INTRODUCTION 

Austenitic stainless steel (SS) alloys are commonly used in internal structures of nuclear 

reactors (internals) because of their high resistance to corrosion, irradiation, and excellent 

mechanical properties. These alloys need to perform in harsh environment, for example at 

temperatures of 300 - 370℃, typical for lower internals in Light Water Reactors (LWR), at 

neutron fluxes of 1014 – 1015 neutron/cm2/s, and at coolant flow rates of ≃104 kg s-1 [1]. 

Physically, the aging of internals appears as cracking, which is driven by the stress corrosion 

cracking (SCC) mechanism. The hydrogen atoms from primary coolant circuit of LWR increase 

the SCC sensitivity [1]. 

Austenitic SS exhibits periodic arrangement of atoms in space and forms Face Centred 

Cubic (FCC) crystal lattice [1]. Various aspects of FCC crystal phenomena, such as strain and 

stress localization, texture evolution, work hardening and void formation, have been analysed 

in the literature by the emergence of crystal plasticity theory using the concept of a dislocation 

as a linear lattice defect or discontinuity [2, 3, 4]. 
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A finite element method is a strong numerical tool which has been widely established for 

studying the mechanical behaviour of crystalline materials. Voronoi polycrystalline aggregates 

have been assigned to estimate inter-granular normal stress distributions as an important 

ingredient towards Inter-Granular Stress Corrosion Cracking (IGSCC) [5, 6, 7].  

Experimental observations [8] on hydrogen-charged polycrystalline nickel show an 

increase of dislocation’s mobility (higher velocities) and accordingly a decrease of stress. 

Furthermore, the amount of deformation in a localized region adjacent to the fractured surface 

is eventually increased which is called Hydrogen Enhanced Localized Plasticity (HELP) [8]. 

However, the initial activation of immobile dislocations tends to increase with hydrogen 

concentration, which is related to the loss of ductility and increase of embrittlement. For 

example, the yield strength is notably increased in hydrogen-charged specimens under uniaxial 

tension (increase of 25% for nickel and 30% for austenitic SS [8, 9, 10, 11]) and the hardening’s 

stages react in different manner for hydrogen-free and for hydrogen-charged FCC crystal 

specimens under uniaxial tension. 

This study attempts to derive crystal plasticity rate-independent (objective) constitutive 

equations and proposes a rate-independent tangent modulus between the objective tensors in 

the constitutive equations for numerical implementation. In addition, the study tries to 

incorporate hydrogen concentration parameters in the rate-independent constitutive equations 

by the consistency condition and thermodynamics of hydrogen atoms. Finally, all the 

derivations are implemented into finite element code Abaqus through the User MATerial 

subroutine to simulate stress-strain behaviour of hydrogen-charged austenitic SS specimen 

under tensile loading and finite hydrogen concentration. 

2 CRYSTAL PLASTICITY CONSTITUTIVE EQUATIONS 

Austenitic stainless steel crystallizes into a FCC structure. Crystal dislocations glide along 

the 12 slip systems, {111} ⟨110⟩, and a trail of them is visible in each term of the constitutive 

equations [12]. In general, the constitutive equations of isothermal large-strain elastoplasticity 

are expressed in the rate form, �̰�
∗

= 𝐹(�̰�, 𝛯), where �̰�
∗
 represents an objective stress rate, �̰� is 

the symmetric part of the velocity gradient and 𝛯 denotes the internal variables [12]. 

Tangent modulus 𝐿
≈

 (also tangent stiffness matrix) is required in finite element simulations 

at each time increment to describe the local material behaviour. It assigns a stress increment to 

a strain increment and is of fundamental importance for the numerical determination of the 

equilibrium state. For increasingly sophisticated material models the tangent modulus can be 

approximated only numerically. In the following, a derivation of the tangent modulus is 

presented in a finite strain framework1. 

2.1 Elastic rate-independent tangent modulus 

The elastic behaviour of the material is distinguished from its plastic counterpart by a 

concave yield surface concerning the Cauchy stress tensor. This scalar-valued tensor function 

indicates the elastic regime whenever the stress state is located inside the yield surface. The 

linear-elastic constitutive equation for the FCC crystal with cubic symmetry is written as [12], 

�̰� = 𝑐
≈

: 휀̰ (1) 

                                                 
1 Symbol notation is introduced in Tab. 2 in Appendix. 
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where the non-zero coefficients of elasticity tensor in Voigt notation are 𝑐11 = 𝑐22 = 𝑐33, 𝑐44 =
𝑐55 = 𝑐66, 𝑐12 = 𝑐13 = 𝑐23. By applying the time derivative to the linear elastic constitutive 

equation, the Cotter-Rivilin objective rate-independent form of the tangent modulus in the 

current configuration is derived as [12], 

�̰�
∗

= 𝐿
≈

𝑒𝜏 : �̰�𝑒
 (2) 

where �̰�
∗

= �̰̇� + �̰� . (�̰� − �̰�𝑝) − (�̰� − �̰�𝑝) . �̰� is the Cotter-Rivilin objective rate, 𝐿 𝑒𝜏
𝑖𝑗𝑘𝑙 =

𝑐𝑖𝑗𝑘𝑙 +
1

2
(𝜏𝑖𝑙𝛿𝑗𝑘 + 𝜏𝑖𝑘𝛿𝑗𝑙 + 𝜏𝑗𝑙𝛿𝑖𝑘 + 𝜏𝑗𝑘𝛿𝑖𝑙) is the tangent modulus, �̰� is the Kirchhoff stress 

tensor, 𝐷𝑖𝑗
𝑒 =

1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
−

𝜕𝑣𝑗

𝜕𝑥𝑖
) . By applying some algebraic manipulations, the final form in terms 

of the Zaremba-Jaumann objective stress rate is obtained [12], 

�̰�
𝛻

= 𝐿
≈

𝑒𝜏 : �̰�𝑒 + �̰� . W̰𝑝 − �̰�𝑝. �̰� (3) 

where2 �̰� = skew(∇�̱��̱�(�̱�, 𝑡)), and �̰�𝑝 = ∑ �̇�𝛼(𝑡)skew(�̱� 0
𝛼 ⊗ �̱�0

𝛼)12
𝛼=1 . 

2.2 Plastic rate-independent tangent modulus 

Theory of finite inelastic (plastic, viscose, etc.) strain is based on the fundamental 

assumption where the total deformation gradient is decomposed into a product of purely plastic 

(intermediate configuration) and elastic (final configuration) terms [12]. A unique intermediate 

configuration must be isoclinic (orientation-preserving) which means no change of lattice 

orientation takes place during plastic deformation. However, the orientations may eventually 

change in the current configuration by elastic deformation.  

Physically, plastic deformation occurs by gliding of dislocations in active slip systems 𝛼, 

which can be described by plastic velocity gradient3 [12]  

�̰�𝑖
𝑝

= ∑ �̇�𝛼(𝑡)�̱� 0
𝛼12

𝛼=1 ⊗ �̱�0
𝛼. (4) 

The Jaumann objective stress rate is expressed in terms of shear strain rate (�̇�) and symmetric 

part of the velocity gradient (�̰�),  

�̰�
𝛻

= 𝐿
≈

𝑒𝜏 : �̰� − ∑ �̇�

12

𝛼=1

[𝐿
≈

𝑒𝜏: 𝑠ym(�̱�𝛼 ⊗ �̱�𝛼) + skew(�̱�𝛼 ⊗ �̱�𝛼). �̰� 

                  −�̰�. skew(�̱�𝛼 ⊗ �̱�𝛼)]. (5) 

The rate of Kirchhoff stress tensor, �̇�𝛼, within each slip system is given by considering 

two constrains, the yield condition (�̇� = �̇�𝛼 − �̇�𝛼
𝑐𝑟 ≤ 0) with respect to critical resolved stress 

as a strength in the associated slip system, �̇�𝛼
𝑐𝑟, and �̇� as a rate of yield surface, and the 

consistency condition (if �̇� = 0 then �̇�𝛼 ≥ 0), 

�̇�𝛼 = (𝐿
≈

𝑒𝜏 : 𝑠 ym(�̱�𝛼 ⊗ �̱�𝛼) + skew(�̱�𝛼 ⊗ �̱�𝛼). �̰� − �̰�. skew(�̱�𝛼 ⊗ �̱�𝛼)) 

                            ∶(�̰� − ∑ �̇�𝛽sym(�̱�𝛽 ⊗ �̱�𝛽)12
𝛽=1 ). (6) 

                                                 
2 ∇ is the gradient operator in the current configuration. 
3 Where �̱� 0

𝛼  is the slip direction and �̱�0
𝛼 is the normal to the slip plane in slip system 𝛼 in the reference 

configuration, and �̱�𝛼 = �̰�𝑒 .s̱ 0
𝛼  and �̱�𝛼 = �̱� 0

𝛼 . F̰𝑒−1in the current configuration. 
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By considering the consistency condition, the matrix form of the relation between the shear 

strain rate and symmetric part of velocity gradient is derived4, 

�̇�𝛼 = ∑(

12

𝛽=1

∑(𝐿
≈

𝑒𝜏 : 𝑠 ym(�̱�𝛼 ⊗ �̱�𝛼) + skew(�̱�𝛼 ⊗ �̱�𝛼). �̰� − �̰�. skew(�̱�𝛼 ⊗ �̱�𝛼))

12

𝛼=1

 

      : 𝑠 ym(�̱�𝛽 ⊗ �̱�𝛽) + ℎ
𝛼𝛽)−1 :( 𝐿

≈

𝑒𝜏 : 𝑠 ym(�̱�𝛼 ⊗ �̱�𝛼) + skew(�̱�𝛼 ⊗ �̱�𝛼). �̰� 

               − �̰�. skew(�̱�𝛼 ⊗ �̱�𝛼)) : �̰� (7) 

or, using shorter notation, 

�̇�𝛼 = (∑ 𝛹𝛼𝛽12
𝛽=1 𝛺𝛽) : �̰�. (8) 

The rate-independent plastic tangent modulus is derived,  

𝐿
≈

𝐽 = 𝐿
≈

𝑒𝜏 − (∑ ∑ 𝛹𝛼𝛽12
𝛽=1 . 𝛺𝛼. 𝛺𝛽12

𝛼=1 ). (9) 

Finally, the rate-independent constitutive equation is given by the rate-independent 

tangent modulus,  

�̰�
𝛻

= 𝐿
≈

𝐽 : �̰�. (10) 

The elastic (𝐿
≈

𝑒𝜏
) and plastic (𝐿≈

𝐽
) rate-independent tangent moduli have been implemented in 

the Abaqus UMAT subroutine using the hardening law from the following section. 

2.3 Hardening model 

Plastic deformation produces dislocations which can glide along the 12 slip systems of 

the FCC crystal. The first slip can be predicted by the optimally oriented slip system by finding 

the corresponding maximum Schmid factor. With time (or deformation), crystal orientations 

may change due to elastic deformation, which may activate and/or produce dislocations in other 

slip systems. Therefore, interactions between dislocations must be considered during plastic 

simulation. This phenomenon is called “dislocation hardening” and there exists different types 

of models associated with it. This study considers the Bassani & Wu hardening model that 

includes both the active self5 and latent6  hardenings and affects the critical resolved shear stress 

by the consistency condition [13],  

�̇�𝑐𝑟
𝛼 = ∑ ℎ

𝛼𝛽�̇�𝛽12
𝛽=1   (11.a) 

ℎ
𝛼𝛼 = [(ℎ0 − ℎ𝑠) 𝑠𝑒𝑐ℎ2 (

ℎ0−ℎ𝑠

𝜏𝐼−𝜏0
𝛾𝛼) + ℎ𝑠] [1 + ∑ 𝑓𝛼𝛽 𝑡𝑎𝑛ℎ(

𝛾𝛽

𝛾0
)12

𝛽=1
𝛽≠𝛼

]  (11.b) 

ℎ
𝛽𝛼 = 𝑞ℎ𝛼𝛼               𝛼 ≠ 𝛽  (11.c) 

where 𝑞 ∈ [0,0.3] and 𝑓𝛼𝛽 is a parameter associated with various dislocation interactions, 𝜏0 is 

the initial critical resolved shear stress at the onset of plastic deformation, 𝜏𝐼 is the Stage I stress 

due to large plastic flow initiation, ℎ0 is the hardening modulus associated with 𝜏0, ℎ𝑠 is the 

easy dislocation glide hardening, 𝛾0 denotes the amount of slip when the interaction of 

                                                 
4 ℎ

𝛼𝛽
 is a component of the hardening model which is discussed in the next section. 

5 Interaction between dislocations within the same slip system. 
6 Interaction between dislocations from different slip systems. 
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dislocations from different slip systems reaches peak strength, 𝑠𝑒𝑐ℎ is the secant hyperbolic, 

and 𝛾𝛼 is the shear strain in the α slip system. 

2.4 Hydrogen concentration 

Hydrogen solute atoms interact with dislocations and reside in the microstructure of the 

austenitic SS. The multiplicative decomposition of the deformation gradient is proposed in 

terms of the elastic �̰�𝑒, plastic �̰�𝑝, and hydrogen-associated7 part �̰�ℎ [14],  

�̰� = �̰�𝑒 . F̰ℎ. F̰𝑝. (12) 

Hydrogen atoms reside at two locations in the crystal lattices: (i) normal interstitial lattice 

sites (NILS) and (ii) trapping sites associated with dislocation movements. The quantities in 

each hydrogen location are always in equilibrium, based on the theory of Oriani [15],  

𝜃𝑇
𝛼

1−𝜃𝑇
𝛼 =

𝜃𝐿

1−𝜃𝐿
𝐾𝑇 (13) 

where 𝜃𝐿 denotes the occupancy of lattice sites, 𝜃𝑇
𝛼 is the respective occupancy of the trap sites 

in the slip system 𝛼, and 𝐾𝑇 is the equilibrium constant. Accordingly, the normal NILS 

concentration and normal trap concentration (atoms per volume) [14], 

{
𝑐𝐿 = 𝐶𝐿/𝑁𝐿

𝑐𝑇
𝛼 = 𝐶𝑇

𝛼/𝑁𝐿
. (14) 

where 𝑁𝐿 is the number of lattice atoms per unit of lattice volume calculated by Avogadro’s 

number and the molar volume of the lattice. It is assumed that each slip system has only one 

trap site associated with the gliding dislocations [18]. This assumption provides the relation 

between the dislocation density on the slip system 𝛼 and the number of trap sites [14], 

𝜌𝛼 = 𝑁𝑇
𝛼𝑏. (15) 

Furthermore, the dislocation density is expressed in terms of the Burgers vector (b) and critical 

resolved shear stress [14],  

𝑁𝑇
𝛼 = (

𝜏𝑐𝑟
𝛼

�̃�𝐺
)

2 1

𝑏3 . (16) 

Although hydrogen atoms can diffuse in polycrystalline materials, recent simulation 

results of hydrogen diffusion in nickel polycrystals indicate less than 10% spatial variation of 

total hydrogen concentration [16]. Therefore, hydrogen diffusion is neglected in this study. This 

makes the total hydrogen concentration fixed at all times and at each material point of the body, 

resulting in the following hydrogen equilibrium equation [14], 

𝑐𝐿 + ∑ 𝑐𝑇
𝛼

𝛼 = 𝑐0. (17) 

Finally, the effect of hydrogen concentration is employed in the critical shear stress rate, 

Eq. (11.a), by the following modification of the hardening law [14], 

ℎ𝐻
𝛼𝛽

= (1 + 𝐻𝑐𝑐𝑇
𝛼)ℎ𝛼𝛽

. (18) 

                                                 
7 In general, the hydrogen deformation contains both dilatational (volumetric) strain (tr(휀̰ℎ) ≠ 0) and 

deviatoric (shear) part (dev(휀̰ℎ) = 휀̰ − 1/3tr(휀̰ℎ) ≃ 0). But it is experimentally observed that the hydrogen-

deformation gradient is purely dilatational. 
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Similarly, the effect of hydrogen on the initial critical shear stress (𝜏0) is modelled linearly as 

(𝜏0
𝛼)𝐻 = (1 + 𝑇𝐶𝑐0

𝛼)𝜏0, where 𝑐0
𝛼 is the trap hydrogen concentration at initial time step. 

To conclude, the effect of hydrogen is described by 1+12 additional variables (𝑐𝐿 and 𝑐𝑇
𝛼), 

which are controlled by three newly introduced (hydrogen) parameters (𝐻𝑐 < 0, 𝑇𝑐 > 0, 𝑐0).  

3 VALIDATION 

In this section, the implementation of the derived constitutive equations in Abaqus 

UMAT subroutine is validated by performing a tensile test of Ni single crystal bar model along 

the [135] crystal direction. In Fig. 1 a comparison is shown between the simulation results of 

this and a previous study [17]. Same elasto-plastic material and hydrogen parameters are used 

in the comparison (see [17] for details). A good agreement is observed, which validates the 

implementation of the UMAT code. 

  

Figure 1: Macroscopic true stress-strain curves of hydrogen-free and hydrogen-charged Ni 

single crystal bar model. Left: this study. Right: previous study [17]. 

4 RESULTS (PRELIMINARY) 

Several tensile test simulations are performed on the austenitic SS 316L polycrystalline 

model using different hydrogen concentrations to study the effect of dislocation-hydrogen 

interactions. Finite hydrogen concentrations result in an increased yield stress (due to activation 

of immobile dislocations) and reduced hardening with accompanied plastic strain localization 

(due to increase of dislocation mobility). 

A fully periodic Voronoi-based polycrystalline model is generated with 100 grains of 

random crystallographic orientations (zero texture) and meshed by finite elements as shown in 

Fig. 2. The periodicity of the model is introduced to avoid the free-surface effects. 
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Figure 2: A fully periodic Voronoi tessellation with 100 grains (different colours) and the 

corresponding finite element mesh (42000 elements of C3D10 type) used in this study. 

The material elasto-plastic parameters for austenitic SS 316L are taken from [6] while the 

hydrogen parameters of Ni from [10] are used as a first approximation (see Tab. 1 in Appendix). 

In Fig. 3, the effect of varying 𝑇𝑐 (controlling the yield stress) and 𝐻𝑐 (controlling the 

softening) is demonstrated for a fixed total hydrogen concentration 𝑐0 = 0.015. A clear 

influence of each of the parameters is shown. 

  
 

Figure 3: Macroscopic true stress-strain curves of hydrogen-free and hydrogen-charged 

austenitic SS 316L polycrystalline model. Left: effect of 𝑇𝑐 (and the initial hydrogen trap 

concentration 𝑐𝑇,0
𝛼 ). Right: effect of 𝐻𝑐. 

The effect of hydrogen on local strain distribution is shown in Figs. 4 and 5 for a polycrystalline 

SS 316L model under 0.10 tensile strain deformation. Indeed, a tendency of enhanced strain 

localization can be observed in the hydrogen-charged model, which qualitatively confirms the 

experimental observations [8]. However, further analysis is needed to quantify this effect in 

more detail and with better confidence. 
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Figure 4: Maximum principal strain calculated for austenitic SS 316L polycrystalline model at 

macroscopic 0.10 tensile strain. Left: hydrogen free. Right: hydrogen charged (using the same 

parameters as for the green curve in Fig. 3 Right). 

 
 

Figure 5: Enlarged part of Fig. 4. showing a tendency of strain localization in the hydrogen-

charged polycrystalline model. 

5 CONCLUSIONS 

The effect of hydrogen concentration in polycrystalline austenitic stainless steel 316L has 

been studied in a series of tensile aggregate simulations. A rate-independent form of constitutive 

equations and corresponding tangent moduli have been derived in a finite strain formalism 

accounting for the dislocation-dislocation (Bassani-Wu hardening) and dislocation-hydrogen 

interactions. The derived equations have been successfully implemented in the User MATerial 

subroutine in Abaqus software. The preliminary results show an enhanced tendency of strain 

localization in hydrogen-charged models of polycrystalline austenitic stainless steel 316L. 
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APPENDIX 

Table 1: Parameter values used in the analysis. 

Parameter Symbol Value 

Shear modulus G 75.6 [GPa] 

Burgers vector b 0.249 [nm] 

Molar volume of Ni 𝑉𝑀 6.59 10−6 [m3/mol] 

Lattice atoms per unit volume 𝑁𝐿 9.14 1028[1/mm3] 

Proportionality constant �̃� 0.3 

Elasticity tensor coefficient 𝑐11 200 [GPa] 

Elasticity tensor coefficient 𝑐12 136 [GPa] 

Elasticity tensor coefficient 𝑐44 205 [GPa] 

Initial hardening modulus ℎ0 386 [MPa] 

Hardening modulus during easy 

glide 
ℎ𝑠 70 [MPa] 

Stage I stress 𝜏𝐼 97.9 [MPa] 

Initial critical resolved shear 

stress 

𝜏0 82.8 [MPa] 

Reference slip in Bassani-Wu 

hardening law 

𝛾0 0.018 

 

Table 2: Symbol notation used in this study. 

Symbol Variable Symbol  Variable 

�̰� Second order Cauchy 

stress 
�̇�𝛼 Shear strain rate in slip system α 

𝑐
≈

 Fourth order elasticity 

tensor 

s̱ 0
𝛼  Slip direction vector in slip 

system α in reference 

configuration  

휀̰ Second order infinitesimal 

strain 

�̱�𝛼 Slip direction vector in slip 

system α in current configuration 

�̰� Second order Kirchhoff 

stress tensor 
�̱� 0

𝛼  Normal direction vector of slip 

system α in reference 

configuration 
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𝐿
≈

 Fourth order rate 
independent tangent 

modulus tensor 

�̱� 
𝛼 Normal direction vector of slip 

system α in current configuration 

𝐿
≈

𝑒𝜏, 𝐿
≈

𝐽 Elastic and plastic tangent 

modulus tensors 

�̰� Second order total deformation 

gradient tensor 

𝑣 Velocity vector �̰�𝑖
𝑝
 Second order plastic part of 

velocity gradient in intermediate 

configuration 

�̰� Symmetric part of velocity 

gradient 

𝑋𝑖 Position in the reference 

configuration 

𝑥𝑖 Position in the current 

configuration 
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