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ABSTRACT

Traditionally, nuclear data evaluations are based on experimental data and nuclear model
calculations using data assimilation methods and expert judgment. In this work an alternative
approach using machine learning algorithms is tested on an example of computing the delayed-
neutron multiplicity (νd) of neutron induced fission. Several machine learning models are used
before being compared with each other. Then the correlations between different isotopes and
energy ranges were deduced from the predictions of the best fitted algorithm and compared to
reference results.

The GEF code is compared to experimental data from EXFOR database, then used to feed
the machine learning models. GEF calculates the multiplicity of delayed-neutron as a function
of input model parameters which are randomly varied according to the assigned standard devi-
ation levels.

1 INTRODUCTION

In 2017 to 2019 studies ([1][2]) the Bayesian approach was used to derive the variance-
covariance of the delayed fission yields of actinides based on theoretical model implemented
in the GEF code. In this paper we present a novel approach using machine learning models to
compute the average number of delayed neutrons per fission (νd).

The paper is divided in five chapters. In chapter 2, the process of the simulations per-
formed with the GEneral Description of Fission Observables(GEF [3][4]) code is detailed. The
simulations have been carried out on neutron-induced fission from 10−8 to 14 MeV by changing
some parameters each time for 235U, 238U and 239Pu. Chapter 3 presents the machine learning
algorithms used in this study. In chapter 4, the performances of the different models are an-
alyzed before calculating the correlations between the different models using the best model
obtained. Chapter 5 concludes the outcomes.
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2 GENERAL DESCRIPTION OF FISSION OBSERVABLES

2.1 GEF code

Delayed neutrons [3] are neutrons emitted after a nuclear fission event by one of the fission
products (or fission product daughter after β− decay), at times ranging from a few milliseconds
to a few minutes after the fission event. Neutrons born within 10−14 seconds after the fission
are referred to as prompt neutrons.

GEF code [3] calculates pre-neutron and post-neutron fission-fragment nuclide yields,
angular momentum distributions, isometric yields, prompt-neutron yields and prompt-neutron
spectra, prompt-gamma spectra, and several other quantities for a wide range of fissioning nu-
clei in spontaneous fission and neutron-induced fission. Output consists of fission observable
on an event-by-event basis.

For the purpose of this work, GEF code’s ability to compute elements on delayed neutrons
processes is relevant. Furthermore a special version of GEF, enabling changes of some model
parameters on the input, was kindly provided by the main author of the code solely for the pur-
poses of this study. Fig.1 shows the comparison between the GEF results and experimental data
extracted from the EXFOR data base. Experimental data include the associated uncertainties.

Figure 1: Comparison between GEF results and experimental data for 235U (left) and 238U
(right).

2.2 Mathematical structures and simulations

Two mathematical structures are studied. To each of these structures, the same machine
learning models were applied.

1. Primary structure (PS): for a given isotope, we first use machine learning models to
predict the multiplicity of delayed-neutron based on the energy of the incident neutron
only:

Ŷ = f(E) (1)
E the energy of the incident neutron

Ŷ the estimator of the target variable (νd)
f the model used.
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For this purpose, these models were fed with experimental data from the EXFOR database
as well as GEF-simulated data. GEF calculations were done for 500 energy points
in the interval between [2.53 × 10−8MeV; 14MeV] with a logarithmic step. Only de-
fault/reference parameters were used in these simulations. For a given energy, GEF com-
puted 13 values of the multiplicity of delayed neutrons, making in total 6 500 simulations
for each isotope. This data are referred to as Y GEF

ref .

Furthermore, experimental data (Yexp) and their uncertainties were taken as normally dis-
tributed around the experimental values.

2. Advanced structure (AS): for a given isotope, we used machine learning models to
predict the multiplicity of delayed neutrons as a function of incident neutron energy (E)
and GEF code parameters (Pi):

Ŷ = f(E,P1, ..., Pp) (2)

As above we take 500 energy points for each isotope.For a given energy, 100 values of
the multiplicity of delayed neutron were calculated with GEF with different parameter
values for each simulation.

The parameters are chosen randomly, following a normal law (the mean value is the
reference value of the parameter and the standard deviations were given by the author of
the code). All of this data will be used to feed this type of machine learning models. We
will have 50 000 simulations for each isotope. This data are are referred to as Y GEF

param.
Note that the experimental data are not taken into account here since the purpose is to
train the model on parameters.

The primary structure is used to compare the accuracy of machine learning with regards to
GEF predictions. The advanced structure is used to compute the correlations between energies
and isotopes.

3 MACHINE LEARNING ALGORITHMS

Several machine learning algorithms were used [5]. For all of these models we predict a
real-valued output Y as a function of an input vector XT = (X1, X2, ..., Xp).

• The Linear regression forecasting function has the form followed Eq. (3):

f(X) = β0 +

p∑
j=1

Xjβj (3)

Here βj ’s are unknown parameters or coefficients, and the variables Xj are the explana-
tory variables. Then we have a set of training data (x1, y1)...(xN , yN) from which to esti-
mate the parameters β. Each xi = (xi1, xi2, ..., xip)

T is a vector of feature measurements
for the i-th case. The common method is least squares, in which we pick the coefficients
β = (β0, β1, ..., βp)

T to minimize the loss function named the residual sum of squares.
The problem is shown on Eq. (4)

β̂ = argmin
β

{
N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

}
. (4)
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• The Lasso regression adds a constraint to the linear regression optimization. Indeed we
always build a model with the form of Eq. (3) but the optimization problem (in Lagrangian
form) is now Eq. (5):

β̂lasso = argmin
β

{
1

2

i=N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

i=p∑
j=1

|βj|

}
. (5)

λ is an hyperparameter of the model to optimize. Note that it is necessary to scale the
training data before using this model.

• Ridge regression is similar to Lasso regression expect that we use a L2 penalization in
the optimization problem. So we find the value of β by solving Eq. (6):

β̂Ridge = argmin
β

{
1

2

i=N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

i=p∑
j=1

(βj)
2

}
. (6)

• Support Vector Machine regressor suppose the same shape as linear regression as well
(Eq. (3)) but the optimization problem to estimate β is changed:

β̂SVM = argmin
β

{
i=N∑
i=1

Vϵ

(
(yi − β0 −

p∑
j=1

xijβj)
2
)
+
λ

2

i=p∑
j=1

β2
j

}

where Vϵ =

{
0 if |r| < ϵ,
|r| − ϵ otherwise.

(7)

λ and ϵ are hyperparameters of the model to optimize.

• Random Forest regressor: first several trees are build and then used for the forecasting
function.The forecasting function used is:

f̂B
RF =

1

B

B∑
b=1

Tb(x)

where B is the number of tree and Tb, b = 1, .., B is a tree

(8)

In fact, the mean of the output of the B trees is used for the forecasting [5].

• Neural networks A neural network is a two-stage regression model. The architecture
with the best results for our study is the following: as many input RElu neurons are
used as the number of feature. Then three hidden layers with respectively 64, 256 and 64
neurons, all of them associated to a RElu activation function. Due to the regression there
is only one linear neuron in the last layer [5].

3.1 Metrics used

Several metrics1 were used to evaluate the performance of the models. We call Y the true
value (νd) of a sample and Ŷ the predicted value by a model. So Y can be Yexp or Y GEF

ref or
Y GEF
param, depending on what kind of data is used to train and test the model in consideration.

1Best models have the first metric close to 1 and the others close to 0 (minimization).
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506.5

• Coefficient of determination (R2) is defined by: 1 −
∑N

i=1(yi−ŷi)
2∑N

i=1(yi−ȳ)2
where ȳ is the mean of

the yi.

• Root Mean Squared Error (RMSE): RMSE =
√

1
N

∑N
i=1(yi − ŷi)2.

• Mean Absolute Percentage Error (MAPE): MAPE = 1
N

∑N
i=1 |

yi−ŷi
yi

|

• Maximum error metric is just the value of the biggest forcasting error.

3.2 Correlations for the advanced structure

Correlations between GEF parameters and the multiplicity for the advanced structure are
studied to determine the parameters for the forecasting models. This study is not necessary
for the mathematical primary structure because of the fact that this structure does not take into
account the GEF parameters.

The most correlated parameters have been selected for the forecasting of the target vari-
able depending on the studied isotope. Here, we took only variables with a correlation superior
to 0.1.

4 RESULTS

4.1 Models performance

Whether it is in the case of primary structure or advanced structure, the results between
models have the same behavior. Here, only results concerning the primary structure are shown
(Y = Y GEF

ref ). The Table 1 shows the results of the primary structure with 235U.

Table 1: Metrics results (using cross validation) for 235U (PS).
RMSE R2 MAPE MAX err

Linear regression 0.00039 0.70 0.017 0.0014
Lasso regression 0.00039 0.70 0.017 0.0014
Ridge Regression 0.00039 0.70 0.017 0.0014
Random Forest 0.00011 0.97 0.006 0.0005

SVM 0.00023 0.89 0.010 0.0012
Neural Networks 0.00013 0.97 0.006 0.0011

Random Forest and Neural Networks are the best models for all metrices. Even if Random
Forest has better metric results, Neural networks is the model used in the next step of our study
because the metric difference with Random Forest is very low (10−5 in term of RMSE) and
neural Networks is a more consistent model.

Fig. 2 illustrates the performance of several machine learning models depending on the
percentage of data used to train them.

First, it is interesting to note that the RMSE are small compared to the average value
of the multiplicity of each isotope. For example, the mean value of the multiplicity of delayed
neutron for 235U is 0.0161 and 0.0506 for 238U. After using more than 25% of the data for
training, the RMSE values (except for linear, lasso and ridge regression) are respectively lower
than 0.00025 and 0.00020. We make an average error of 1.5% for 235U and 0.4% for 238U.

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12–15, 2022
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Figure 2: Comparison between machine models for the primary structure ( 235U on left and 238U
on the right)

Then, as said before, using more than 25% of data allowed to obtain reasonable results
for the best models. The best models are Random Forest, Support vector Machine and Neural
Networks. Neural Networks shows the best performance for this case.

However, it is necessary to specify that increasing the amount of data does not necessarily
improve the performance. It is the quality of the new data that matters. Therefore it is why it is
possible to see jumps in the value of the RMSE for some models in Fig. 2.

4.2 Primary structure: forecasting of multiplicity of delayed neutrons

After using several metrics to pick the optimal machine learning algorithm, the chosen
algorithms are compared to GEF and experimental data in Fig. 3.

First of all, the models trained on Yexp do not have the same behavior as the models trained
on Y GEF

ref . Both of them seems good but the models trained on experimental data have a better
fitting on experimental data.

Figure 3: Results for models trained on GEF data and models trained on experimental data
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Differences among them are indicators of consistency between the model predictions and
experimental measurements. Different behavior at low energies for 238U can be explained by
the lack of measured data.

4.3 Advanced structure: Correlations between energies and isotopes

The energies correlations are studied and compared with previous studies [2]. Neural
network allowed us to calculate correlation matrices (see fig 4 the energy correlation matrix for
235U). We remind that these matrices contribute to the evaluations made available to users in
the libraries of evaluated data Fig. 4

Figure 4: 235U-Energy correlation matrix and uncertainties calculated using neural network
training

The correlations between 235U/238U, 235U/239Pu and 238U/239Pu were computed for sev-
eral energy values thanks to the advanced structure. Our results were compared with previous
studies [1].

Figure 5: Correlations between 235U/238U (left) and 235U/239Pu (right)
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5 CONCLUSIONS

The GEF code and experimental data from the EXFOR database were used to feed ma-
chine learning algorithms. The aim was to use these algorithms to forecast the multiplicity of
delayed neutrons, compute the covariance matrix for each isotope and compute the correlations
of νd between isotopes for several energies.

It was proven that machine learning trained on GEF data is able to reproduce with high
precision the GEF results. However, we got better fitting results on experimental data with
algorithms trained on experimental data.

Comparison between GEF and EXFOR based machine learning predictions provides the
information on the consistency between the model predictions and experimental measurements.
It can serve to guide the improvement of nuclear models. Most complete predictions are ob-
tained using all the available data, based on experiments and theoretical model, in the machine
learning algorithms.

The computation of the correlations between isotopes shown that machine learning is
able to replace the existing methods in this field too, even if improvements are possible. For the
energy matrix correlations, the results using machine learning are the same as previous studies.
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