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ABSTRACT

Computational fluid dynamics is the standard approach to simulate the behaviour of fluids
governed by the Navier-Stokes equations. This problem always involves a suitable treatment
of the non-linearity of the advection term in the equations, which is the main bottleneck in per-
forming fast simulations. Moreover, as the Reynolds number increases, its importance becomes
larger and larger; for this reason, the Navier-Stokes equations are rarely directly numerically
solved, preferring a solution with RANS or LES approaches. These methods model the be-
haviour of the small scales (totally or partially, respectively), and only the larger scales are
directly solved.

In the limit of Reynolds number going to infinite (i.e., viscosity goes to 0), the flow obeys
the Euler equations. These equations are still strongly non-linear, which limits the usable time
step for stability (a common issue in hyperbolic PDEs). These fluids are referred to as ideal
fluids, neglecting the dissipation given by the viscosity. In 1926, Madelung proposed a hydro-
dynamical form of quantum mechanics, showing a link between the linear Schrödinger equation
and the non-linear Euler ones. In particular, he derived the latter from the former, linking the two
different physics. Thus, a novel approach to solving complex non-linear PDEs has been pro-
posed, substituting the non-linear Euler equations with the linear one derived by Madelung. The
fluid state is now a vector of two complex wave functions which satisfy the Schrödinger equa-
tion with an incompressibility constraint. This method is called Incompressible Schrödinger
Flow; literature studies solve this problem using FFT, showing impressive results in predicting
vortex dynamics, an example of this is provided in this work, starting from the MATLAB code
available in literature.

This work aims at implementing this novel approach in a Finite Element framework so
that it is easier to extend it to complex geometries and showing some preliminary results of
different simulations compared with a classical, state-of-the-art CFD approach. In the future, it
would be interesting to investigate the possibility of linking this approach with the temperature
equation to include buoyancy effects.
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1 INTRODUCTION

The behaviour of inviscid fluids, characterised by null viscosity, is described by the Euler
equations. These are a set of quasi-linear hyperbolic Partial Differential Equations (PDEs),
typically expensive to solve due to time step and mesh size requirements [1]. The solution of
these equations is of primary interest in the aeronautical field when supersonic and hypersonic
flows or shock wave propagation are studied [2]. Different methods exist in the literature,
both considering Computational Fluid Dynamics (CFD) approaches [3] or other paths, such as
the Lattice Boltzmann Methods [4]. Specifically, the former employs different discretisation
techniques in time and space to solve ′′directly′′ the Euler equations, however, the mathematical
shape of the PDEs results in a heavy numerical problem.

This work aims at looking at this problem with a different perspective for predicting the
behaviour of inviscid flows: the starting point is the connection between hydrodynamics and
quantum mechanics proposed by Madelung in 1926 [5]. In particular, he derived the compress-
ible Euler equations (continuity and momentum) from the Schrödinger equation. This idea has
been explored by the pioneering work of Chern [6, 7], which developed a novel method under
the name of Incompressible Schrödinger Flow (ISF). This technique can successfully simulate
vortex dynamics; however, its implementation using Fast Fourier Transform (FFT) [8] is a bit
limited as it cannot be directly adopted in the industrial engineering context. Therefore, this
work aims at extending the range of applicability of this technique by implementing it using the
Finite Element (FE) library FEniCSx [9, 10, 11] for Python.

The structure of the paper is as follows: Section 2 is devoted to a brief description of the
ISF method set in a FE framework; Section 3 presents and discusses some numerical results,
employing the original code developed by [6, 7] and the novel implementation using FEniCSx;
finally, in Section 4 the main conclusions are drawn.

2 SCHRÖDINGER’S SMOKE

The Incompressible Schrödinger Flow is a novel numerical technique, developed in [6, 7],
able to describe inviscid fluids behaviour using the Schrödinger equation. This section gives
some basic concepts on this analogy between hydrodynamics and quantum mechanics [5], along
with the description of the ISF solution algorithm.

In quantum mechanics, a wave function represents the physical state of a system and
its amplitude represents the probability of finding a particle inside a portion of the spatial and
temporal domain. In the context of ISF, the flow field cannot be described by a single wave
function wave ψ ∈ C, because the associated velocity field is always characterised by a null
vorticity, which is not generally true [7]. Therefore, the state of the system is described by a 2
components wave function, i.e. Ψ = [ψ1, ψ2]

T ∈ C2, which is the solution of the Schrödinger
equation, i.e.

iℏ
∂Ψ

∂t
= −ℏ2

2
∆Ψ + pΨ←→ iℏ

∂

∂t

[
ψ1

ψ2

]
= −ℏ2

2
∆

[
ψ1

ψ2

]
+ p

[
ψ1

ψ2

]
; (1)

by writing the components of the wave function in polar coordinates and by taking the real and
imaginary part of Eq. (1), the compressible Euler equations are obtained (the proof is found
in [5]). This work will consider only incompressible flows with constant density, so that the
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transformed equations are∇ · u = 0

∂u

∂t
= − (u · ∇)u−∇p

given u = ℏRe
{
−
(
ΨT

)∗
i∇Ψ

}
. (2)

The spatial operators on the wave function Ψ in Eq. (1), i.e. −ℏ2
2
∆ and p, have a physical

interpretation in the Euler equations (2) on u, i.e. (u · ∇)u and −∇p. One of the most impor-
tant results of this transformation, referred to as Madelung transformation, is the change of a
non-linear term (u · ∇)u into a linear one −ℏ2

2
∆Ψ: this is very important from the numerical

point of view, as, in principle, it can lead to a reduction of the solution time.
In the end, the incompressibility constraint (∇ · u = 0) can be equivalently imposed to

the wave function as

Re
{(

ΨT
)∗
i∆Ψ

}
= 0. (3)

Using the linear Schrodinger equations avoids dealing with the convective term in the Euler
equations, which makes the problem transport-dominated, which usually imposes limitations in
terms of time step size, mesh size and stabilisation requirements [1, 12]. The following section
will present how the ISF works in a Finite Element framework.

2.1 Solution Algorithm

Let Ω be the spatial domain, ∂Ω be its boundary, usually composed by Γin ∪ Γw ∪ Γo,
and let [0, T ] be the time interval considered. Given an initial condition Ψ0, the Schrödinger
equation (1), with the constraint (3), can be solved with a first order1 time splitting method2. At
every time step tn → tn+1, the algorithm must solve two differential problems:

1. The prediction step consists of a free-particle Schrödinger equation with the associated
boundary conditions (a plane wave at the inlet and homogeneous Neumann boundaries
for the rest), i.e.

Ψ̃−Ψn

∆t
=
iℏ
2
∆Ψ̃ in Ω,

{
Ψ̃ = ei(k·x−ωt) · [c1, c2]T on Γin

∇Ψ̃ · n = 0 on Γw ∪ Γo
(4)

The wave function needs also to be normalised to 1, since this property is not necessarily
conserved in the time-discrete case, i.e.

Ψ̃←− Ψ̃ · (||Ψ̃||)−1 = Ψ̃ ·
(
ψ̃∗
1ψ̃1 + ψ̃∗

2ψ̃2

)− 1
2
. (5)

2. The correction phase involves a Poisson problem to enforce the incompressibility con-
straint (3). The unknown is φ, which is referred to as pressure, even though its units of
measure are [m2/s]. This quantity has been introduced to make the velocity field diver-
gence free following the idea developed in [7], i.e.

∆φ = ∇ · ũ in Ω,


φ = 0 on Γin

∇φ · n = 0 on Γw

∇φ · n = g on Γo

(6)

in which ũ is the velocity field computed using Eq. (2) with Ψ̃. This phase is also called
pressure projection.

1Higher order time discretisation strategies may improve the convergence of the method itself, whilst having a
larger computational cost.

2A similar solution strategy is also employed in CFD, a very important example is the work of [13].
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The boundary conditions imposed on the wave function Ψ̃ and the pressure φ chosen are
linked to the following ones on the velocity

u = ℏ · k on Γi, u · n = 0 on Γw, u · n = −g on Γo (7)

The value of g can be determined as a consequence of a global mass balance∫
Γin

uin · n dσ =

∫
Γo

u · n dσ =

∫
Γo

(ũ−∇φ) · n dσ =

∫
Γo

g · n dσ (8)

This is a compatibility condition for the problem. In the end, the wave function and the velocity
are updated, i.e.

Ψn+1 = e−iφℏ Ψ̃, un+1 = ũ−∇φ. (9)

Algorithm 1 summarises the overall algorithm.

Algorithm 1: Incompressible Schrödinger Flow solution algorithm.
Input

Ψ0(x), ℏ, ∆t, Nmax;
Output
{Ψ(x, tn),u(x, tn)}Nmax

n=1 ;
for n = 0 : Nmax do

Ψ̃← Schrödinger(Ψn,∆t, ℏ);
Ψ̃← Ψ̃/(ψ̃∗

1ψ̃1 + ψ̃∗
2ψ̃2)

0.5;
φ← Poisson(Ψ̃);
Ψn+1 = e−iφℏ Ψ̃;
un+1 = ũ−∇φ or

= ℏRe
{
−
(
[Ψn+1]T

)∗
i∇Ψn+1

}
In principle, several numerical discretisation techniques can solve the PDEs involved in

this solution algorithm: the original work of [6, 7] employed FFT, which it is in general limited
to structured grids, making it less flexible for complex geometry. For this reason, this work has
set this method in a Finite Element (FE) framework to make it more suited for future develop-
ments on more complicated test cases. The FE approach requires the derivation of the weak
formulations3 [14] of the differential problems (not reported here for brevity). In the end, it is
worth mentioning that it is still unclear if the choice of the functional spaces for Ψ and φ are
connected, as in the classical CFD approach: in fact, in CFD the pressure and the velocity must
have only Taylor-Hood compatible spaces [1], if this is not respected there is no guarantee that
the FE solution converges to the true one.

3 NUMERICAL RESULTS

This section discusses some results on the potentiality of the ISF method: first, the MAT-
LAB code by [6, 7] will obtain a Von Karman vortex street, to highlight the capability of ISF to
predict vortex dynamics; then, the FEniCSx code will simulate an inviscid flow over a Backward
Facing Step (BFS) [15], a typical CFD benchmark test case and its results will be compared with
a potential solution using OpenFOAM [16].

3The differential problem in strong form, e.g. (1), is rewritten to look for a solution in a broader functional
space. Weak formulations usually make use of the scalar product in L2-sense and of the integration by parts.
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3.1 Von Karman Vortex Street - MATLAB

The domain Ω is composed of a rectangle 20× 8 m2, whereas the cylinder obstacle with
radius r = 0.5m is enforced into the system as a constrained velocity region [6, 7], in which the
wave function must assume a prescribed value related to the desired velocity field in that region.
The original ISF code, developed in MATLAB, requires a uniform structured grid to apply FFT:
this case uses 500× 200 elements with a time step of size ∆t = 0.02 s. The CFL condition4 [1]
for this case is more or less equal to 10, which is greater than the ′′classical′′ limit ∼ 1. Indeed,
this is one of the main advantages of the ISF method compared to a CFD approach because
having a non-hyperbolic linear PDE provides less restriction on the discretisation parameters.

Figure 1 shows the advection of particles by the Schrödinger flow at T = 75 s. This result
show how effective the ISF algorithm is in predicting vortex dynamics, which was the main
focus of the original work of [6, 7]. Moreover, using a higher ∆t gives an important advantage
in terms of solution time.

Figure 1: Particles advected by the velocity, computed using ISF (Matlab code, [6]).

The main drawback of this MATLAB code is that it allows uniformly structured grids
only and that obstacles are velocity-constrained regions: this is why the ISF must be extended
to the FE framework to be more general and flexible for employing it in an engineering context.

3.2 Backward Facing Step

Validation of CFD codes widely uses the BFS benchmark, especially for viscous flows
governed by the Stokes or Navier-Stokes equations. The results discussed are preliminary only,
foreseeing an in-depth validation phase. The mesh has been created with GMSH [17] and it is
composed by 16079 triangular elements, (∆x ≈ 10−3m); whereas, the time step size is equal
to 0.02 s and the final time is T = 10 s. The code has been implemented on Google Colab using
the FEM on Colab distribution by [18]; the case required almost 16 minutes to be simulated,
which is reasonably little compared to a CFD approach: for instance, the time step for the
standard approach with this mesh would be ∼ 10−4 ÷ 10−3 s; hence much more steps on the
time loop are needed.

4In the framework of hyperbolic equations, some numerical discretisation techniques restrict the time step for
stability reasons with the Courant-Friedrichs-Lewy condition, i.e. CFL = max

K∈Th

⟨u⟩K∆t
||K|| ≤ 1, given K the element

of the triangulation Th of the domain Ω.
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Figure 2 shows the two components of the wave function (real and imaginary part) at the
final time T : the profiles are very similar to one another, apart from the order of magnitude
between ψ1 and ψ2, thus the influence of ψ1 on the velocity is greater than ψ2. They represent a
plane wave propagation inside the BFS domain, thus modelling the pure transport phenomenon;
the effect on the step on the wave is visible and this enlargement of the wave function directly
impacts the streamlines due to Eq. (2).

Figure 2: Real and imaginary part of wave function as contour plots (left: ψ1, right: ψ2) at final
time T = 10 s, using ISF on FEniCSx.

Figure 3 shows the velocity defined from the previous wave function and the one com-
puted using a potential flow5 formulation [3]. There is no recirculation region behind the step
since the flow is inviscid: in fact, there is no viscosity, and the flow follows the ′′wall boundary′′;
moreover, the flow is almost steady. These results are reasonable from a physical point of view
since there is no viscosity and no boundary layer: the flow follows the boundary keeping the
non-penetration condition. The flow is very similar to the potential one, showing that the im-
portance of the vorticity, for this particular case, is relatively low; however, in principle, the ISF
is able to go beyond potential flows, due to the definition of the 2−component wave function
Ψ.

4 CONCLUSIONS

This work aims at studying the Incompressible Schrödinger Flow, an innovative technique
for simulating inviscid incompressible fluids governed by the Euler equations. This method
uses the analogy between hydrodynamics and quantum mechanics proposed by Madelung in
1926. Its main advantage is substituting a non-linear hyperbolic set of PDEs with a linear
parabolic PDE, i.e. the Schrödinger equation, coupled with a Poisson problem to enforce the
incompressibility constraint. The mathematical shape of the Schrödinger equation comes with
an advantage in terms of simulation time since the time step size can be, in general, larger.
Moreover, stabilisation techniques for transport-dominated problems in a FE framework [1] are
seldom required, ensuring a simple formulation of the problem.

This work aims at extending ISF into a Finite Element framework, making it more suited
for more general problems compared to the original formulation with FFT. In fact, the first re-

5This result has been obtained using the built-in solver potentialFoam in OpenFOAM.
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Figure 3: Comparison at T = 10 s between the ISF velocity streamlines and the potential one,
using LIC (Line Integral Convolution). Below the norm of the difference in a logarithmic scale.

sults by [6, 7] used structured grids with simple geometries. This work shows two main results:
a preliminary test of Von Karman vortex street using the original MATLAB code and a first
assessment of the capabilities of the new code on the Backward Facing Step. The former allows
to fully understand the potentialities and the main critical issues of the method itself, giving
promising results for vortex dynamics prediction and thus highlighting the necessity to study
this technique. On the other hand, this work also tested the new implementation using FE for an
inviscid flow over a Backward Facing Step. The most impressive outcome of this approach is
the simulation time: this is much less than a classical CFD solution of Euler equations, mainly
due to the possibility of considering a higher time step size. In this work, the ISF solution has
been compared with a potential solution, for the sake of simplicity, since a direct solution of the
incompressible Euler equations is not so easy to be implemented. Therefore, this technique is
worth being studied for the simulation of inviscid incompressible flows.

Future works will involve: a further analysis of the variational formulations and the func-
tional spaces of the differential problems; the extension of the original ISF to make it com-
pute the actual pressure field; the investigation of the possibility of using these techniques in a
predictor-corrector scheme for the simulation of viscous flows, governed by the Navier-Stokes
equation; the inclusion of buoyancy effects coupled with the energy equation.
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