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ABSTRACT 

The Probabilistic Safety Assessment (PSA) technique uses Initiating Events (IE) 
probability as the initiator of accident progression in Event Trees (ET). There are various ways 
to calculate initiating events described in IAEA TECDOC-719 [1]. Most IE calculation method 
provides static probability, neglects aging, and does not provide information regarding 
individual influencers on IE probability. Authors developed the technique through a Dynamic 
Bayesian Network (DBN) that evaluates the probability of initiating event from multiple 
hazards with aging consideration. 

This paper presents a methodology and a structure of a Dynamic Bayesian Network for 
Loss of Offsite Power (LOOP) IE with such hazards as earthquakes and tsunamis. Earthquake-
induced tsunami happed in 2011 in the coast of Japan due to one of the most powerful 
earthquakes called the Tōhoku earthquake with 9.0 Mw which caused LOOP, and therefore this 
case could be representative of such structure creation. 

1 INTRODUCTION 

External Event Probabilistic Safety Assessment (EE-PSA) is a widely used method to 
evaluate probabilistically the safety of nuclear facilities against the potential impact of external 
hazards [2]. Typically EE-PSA analyzes only single hazards due to complexity and low 
probability of multiple hazards. Accident in Fukushima Daiichi caused by Tsunami and 
Earthquake showed that multiple hazards could pose a danger despite low probability. This 
accident caused an increase in multiple hazards interest [3]; therefore, many methods and 
methodologies were proposed to evaluate Core Damage Frequency (CDF) in case of multiple 
hazards [4]. Contrary to new methods, approaches presented in section 2 use data from similar 
installations and do not account for the aging of components. These methods do not evaluate 
the impact of multiple hazards that pose a significant risk; therefore, new methods that can 
calculate the probability of IE caused by multiple hazards are crucial for nuclear facilities. 

Most new methods are usually created to account for up to two hazards; therefore, they 
cannot predict the probability of IE realistically. The bayesian network allows one to account 
for as many hazards as needed if probability and correlations are known; therefore, the authors 
decided to develop a methodology (see Section 3) that will enable to account for multiple 
hazards, aging in initiating event freaquency calculation. An example of the method is presented 
in Section 4, and results and conclusions are provided in Sections 5 and 6. 
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2  INITIATING EVENT ANALYSIS METHODS 

Initiating Event analysis is a complicated process for new nuclear facilities due to the 
identification of Initiating Events and their frequency evaluation. The International Atomic 
Energy Agency describes this complex process and the most common approaches [1],[5]. For 
the identification of initiating events, IAEA recommends performing [5]: Deductive analysis; 
Analytical methods; Review of deterministic analyses and safety analysis report; Comparison 
with IE developed for PSA Lelvel 1 for similar plants, existing safety standards, and guidelines; 
Identification based on operating experience from the plant under investigation and similar 
plants. 

The identification process is complicated due to the number of internal and external 
hazards that pose a danger. The ASAMPSA_E (Advanced Safety Assessment Methodologies: 
Extended PSA) project highlighted 97 external hazards, some of which can have correlations 
[6]. Proper identification of hazards and initiating events will eliminate some hazards due to the 
object's location or low probability of occurrence. 

After identification of initiating events, their frequency calculation is performed. The 
most common frequency calculation approaches are [1] : 

• One stage Bayesian methodology that uses generic experience data 

• Two-stage Bayesian methodology using both generic and plant-specific data 

• Mean frequencies from extensive operating experience data gathered over a long 
period 

• Expert opinion on rare events and similar plants experience 

• Failure rates and mission time and failure rate per pipe length; 

• Fault Tree analysis for special rare events; 

• Special plant attributes and characteristics of the geographic location 
Different frequency quantification approaches are used regardless to plant design (new or 

old). The most common method is similar experience from other plants where PSA practitioners 
can use frequencies from databases of United States Nuclear Regulatory Commision (U.S. 
NRC) or other organizations. The LOOP IE frequency calculation methods for new plants are 
One Stage Bayesian and Special Plant and location attributes [1].  

Special plant and location attribute is a specific approach developed for LOOP IE 
frequency calculation. This method establishes connections and relations between the 
frequency of LOOP and switchyard design, the number of off-site lines connected to the 
switchyard, and the impact of weather conditions. The first manual describing this approach 
was NUREG-1032 prepared for the U.S. NRC [7]. Since 1997, U.S. NRC has been publishing 
reports regarding LOOP events, and the most recent one is from 2021 [8]. 

3 GENERAL METHOD OF IE CALCULATION WITH DBN 

The proposed method can be divided into steps presented in Figure 1. The first step is to 
choose the initiating event for which frequency calculation is needed. After Initiating event 
selection, identification of potential hazards that could cause it is performed with their 
correlations (Step 2 and 3). This step leads to a collection of information regarding failure 
probabilities and fragility of components (Steps 4 and 5). Based on collected data, a static 
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Bayesian network is created (Step 6). This bayesian network is updated to a dynamic model 
(DBN) in Step 8 by adding time dependencies such as the aging of components collected in 
Step 7. The last step is a DBN model simulation and statistical calculation of IE frequency (Step 
9). The following steps are shown in the example from section 4. 

 
Figure 1: Methodology of DBN creation for IE calculation 

4 EXAMPLE OF DYNAMIC BAYESIAN NETWORK IN LOOP IE 
CALCULATION 

Nuclear power plants (NPP) have off-site (power from the grid) and onsite power (power 
from plant or emergency diesel generators). Electrical power is crucial because safety systems 
require energy for operation and activation [9]. 

LOOP is one of the initiating events commonly analyzed in PSA for nuclear power plants. 
LOOP is associated with loss of access to an off-site power grid and can lead to an unplanned 
reactor shutdown, which is performed as a precaution [10]. LOOP can be divided by 
causes/places of failure such as plant-centered (PC), switchyard-centered (SC), grid-related 
(GR), and weather-related (WR) [7],[11]. GR LOOP is an event where the initial failure 
occurred in the transmission grid. SC LOOP is an event induced by equipment failure or human 
error in the switchyard. PC LOOP is an event where the design and operational characteristics 
of NPP played a significant role in the cause and duration of the event. WR LOOP is an event 
caused by weather/external hazards. 

During different NPP modes, different LOOP category events were experienced more 
frequently in U.S. NPPs. The most common LOOP category in the 1997-2018 and 2006-2020 
was switchyard-centered LOOP [7],[11]. LOOP events are presented in Table 1. 

Weather-related LOOP events in the USA in the years 1997-2018 were: High Winds, 
Tornado, Salt Spray, Hurricane, Flooding, Ice, Snow and Wind, Snow additionally there were 
cases of SC LOOP induced by Lightning, Earthquakes. 
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Table 1: LOOP events in USA [7],[11]  

Mode LOOP category 1997-2018 2006-2020 
Events Percent Events Percent 

Critical 
Operation 

Plant-centered 6 10.53 6 17.14 
Switchyard-centered 19 33.33 12 34.29 
Grid-related 20 35.09 7 20 
Weather-related 12 21.05 10 28.57 
All LOOPs 57 100 35 100 

Shutdown 
Operation 

Plant-centered 9 21.95 3 17.65 
Switchyard-centered 17 41.46 8 47.06 
Grid-related 4 9.76 2 11.76 
Weather-related 11 26.83 4 23.53 
All LOOPs 41 100 17 100 

4.1 Structure of the ideological Bayesian network for determining initiating events 

A static Bayesian network was created at the beginning of the LOOP IE calculation 
(Figure 1). Static Bayesian network have three types of LOOP failure incorporated: basic (gray 
color), seismic (yellow), and flooding (blue).  

 
Figure 2: Static Bayesian Network for LOOP IE 

The case under consideration presented in Figure 2 resembles the Fukushima Daiichi like 
accident caused by the earthquake and subsequent tsunami. In contrast to the accident 
mentioned above, the developed Bayesian network takes into account not only the overtopping 
through the sea wall but also the destruction of the wall due to the earthquake. 

A probabilistic seismic model node in the Bayesian network performs presampling of the 
peak ground acceleration (PGA) based on the empirical distribution presented in Figure 3 (a). 
Sampled PGA is used in fragility functions of switchyard and greed. The probabilistic Tsunami 
model was developed based on an empirical distribution (Figure 3 (b)) that randomizes the 
height of the tsunami based on the randomly selected peak ground acceleration that is 
transformed to magnitude is calculated in the seismic model. If the sampled tsunami height is 
higher than the sea wall height, the tsunami may cause a loss of power due to the tsunami. 
Otherwise, the wall may fail due to an earthquake, and a tsunami of lower height may result in 
a loss of off-site power caused by a tsunami. 
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Figure 3: (a) PGA probability histogram used in the probabilistic seismic model for the first 

year, (b) Annual probability as a function of magnitude and maximum water lift for a selected 
location [12] 

The parameters of the switchgear and grid fragility functions used in the model were 
obtained from the Electric Power Research Institute (EPRI) document "Seismic probabilistic 
Risk Assessment Implementation Guide" [2], and probabilities of switchyard, grid, plant-
centered failures were taken from the U.S. NRC database [13]. 

4.2 Aging of NPP components 

The mission time of components/elements of a nuclear facility can significantly affect its 
reliability. Literature sources describe this impact as the aging/degradation of reinforced 
concrete structures (containment, tsunami walls, etc.). Corrosion processes occur here, for 
example, due to chlorine compounds, which can significantly affect the fragility functions. 

Ghosh and Padgett [14] presented a time-variant quadratic model for fragility parameters 
(Equation 1) of concrete structures with model coefficients. 

𝑃𝑃[𝐷𝐷𝐷𝐷|𝑃𝑃𝑃𝑃𝑃𝑃](𝑡𝑡) = Φ�ln(𝑃𝑃𝑃𝑃𝑃𝑃)−ln�𝑝𝑝1_𝑚𝑚𝑡𝑡2+𝑝𝑝2_𝑚𝑚𝑡𝑡+𝑝𝑝3_𝑚𝑚�
𝑝𝑝1_𝜁𝜁𝑡𝑡2+𝑝𝑝2_𝜁𝜁𝑡𝑡+𝑝𝑝3_𝜁𝜁

�     (1) 

Where: DS - damage state, PGA - peak ground acceleration in g (1g = 9.81 m / s2), p1_, 
p2_, p3_ - model coefficients, the subscripts of the coefficients indicate the median 𝑚𝑚 or 
dispersion 𝜁𝜁. 

A U.S. NRC  report describes the aging behavior of nuclear power plant components [15]. 
Most of the studies in the U.S. NRC report focused on the effects of aging of mechanical and 
electrical components playing an active role in mitigating accidents. The doctoral dissertation 
of Rajan S. [16] summarizes the impact of aging on the sensitivity functions of electrical 
components, pipes, and pipe systems. According to this summary, electrical components are 
replaced every ten years, and the maximum deterioration is expected at 20%, which gives an 
annual average of 2 % deterioration of the sensitivity function of electrical components per 
year. 
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4.3 Dynamic Bayesian network for determining initiating events probability 

Due to the aging of the components described in section 4.2, the static Bayesian network 
presented in section 4.1 has been modified to obtain a dynamic network. According to the 
definition of a dynamic Bayesian network (DBN), it is a network that connects variables in 
consecutive time steps. In dynamic Bayesian networks, at any moment of time T, the value of 
a variable can be calculated based on internal parameters called regressors and the immediately 
preceding value of a given variable [17]. Generally speaking, DBN is a Bayesian network that 
considers time dependencies or other dependencies on additional variable technical parameters 
of the installation. The practical realization of the DBN implementation consists of time 
discretization; therefore, the state of the installation depends on the previous time step. The 
network dynamics in the developed model is ensured by considering the changes in the 
probability of component failure caused by aging processes during the installation operation. 
Due to the 40-year life cycle of nuclear installations, the dynamic model uses 40 time periods, 
each of which is one year. A diagram of the dynamic Bayesian network structure is shown in 
Figure 4. 

 
Figure 4: Structure of a dynamic Bayesian network for determining the probability of LOOP 

The DBN allows the calculation of LOOP probability more closely to reality by 
considering the aging processes that occur in all components (reinforced concrete structures, 
electrical components). In addition, it allows the calculation of the probability at a selected time 
point in the installation's lifetime. 

5 RESULTS AND DISCUSSION 

DBN allows the evaluation of different LOOP IE parts and total LOOP IE frequency. One 
of the main DBN advantages is modularity, which allows to account for as many potential 
hazards as necessary and to implement any correlations. To show the credibility of the example, 
a DBN comparison to U.S. NRC LOOP probability [13] was performed. The comparison is 
shown in Figure 5, and the results are presented in Table 2.  

For the basic case (NRC data), the calculated frequency for the LOOP IE is shown in 
Figure 5 (a), mean and median values are red and yellow vertical lines, respectively. Figure 5 
(b) presents frequency from DBN in the function of time where the mean value is red, the 
median value is the blue line, and values between 5th and 95th are located in the green zone. 
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Figure 5: (a) LOOP frequency for basic case, (b) LOOP frequency from DBN in the function 
of time; mean and median are red and blue lines; values between 5th and 95th are represented 

by green zone  
 

Table 2: Calculated LOOP probabilities 

Model Time Frame 
Value 5th val. Median Mean 95th val. 

DBN Min 6.24E-03 2.28E-02 2.74E-02 6.10E-02 
Max 8.65E-03 2.52E-02 3.01E-02 6.37E-02 

NRC  1.86E-02 2.79E-02 3.23E-02 6.11E-02 

This figure shows that the LOOP median probability obtained from DBN differs from the 
referential model by about 10-18% (depending on the year). The most extensive variation of 
result is observed in 5% val. that can be up to 3 times lower than NRC. This difference is due 
to the number of external hazards taken into account (two in DBN, ten in NRC) and the 
complete improvement of failure probability after replacement/conservation. Future work on 
the example model by adding additional hazards and more accurate aging influence should 
provide as realistic results as possible. 

6 CONCLUSIONS 

The methodology for implementing DBN in IE calculation was presented and illustrated 
using a simple example of LOOP IE calculation with aging and external weather-related 
hazards such as earthquake and tsunami. The example shows the model's viability if additional 
hazards would be accounted. External Hazards can pose a considerable threat to nuclear 
facilities. Still, because of the low probability of external hazards in the considered example 
case, its influence is only a fraction of the overall failure probability, the influence of aging had 
a more significant influence. 

The example case and model assumption can be further updated to reflect more external 
hazards such as High Winds, Tornado, Salt Spray, Hurricane, Ice, Snow and Wind, Snow 
Lightnings. This update of DBN that accounts for every potential external (weather-related) 
hazard and implements improvement coefficient after maintenance for better incorporation of 
aging effects [18] would lead to more realistic results. 
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