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ABSTRACT 

In the framework of Best Estimate Plus Uncertainty (BEPU) application to Severe 
Accidents (SA) – related scenarios, the assessment of the uncertainties linked to the simulation 
results is a mandatory step. However, Uncertainty Quantification (UQ) analyses do not provide 
an insight into the contribution of individual input parameters - hereon called “features” - to the 
calculated uncertainty band. To this end, a complementary sensitivity analysis is often needed.  

In this regard, the objective of the present work is to establish a data analysis methodology 
allowing a deeper understanding of the features driving the uncertainty. To do so, an alternative 
approach for sensitivity analysis, based on the application of supervised Machine Learning 
(ML), is proposed. The methodology intends to exploit various regression techniques, while 
facing two major constraints: the high number of features involved, the reason of which can be 
found in the intrinsic complexity of SA phenomenology, and the small size of the database, due 
to the computational cost of SA codes. 

As a case study, the proposed ML-based approach is applied to a database developed in 
the MUSA H2020 project: data coming from the simulation of the PHEBUS FPT1 test with the 
MELCOR code are fed to different ML regression algorithms. Preliminary results show that 
the use of an appropriate algorithm can actually help in shrinking the number of features, thus 
improving the interpretability of the model and the identification of the variables that are 
responsible for most of the uncertainty on the response/s. Moreover, this study suggests the 
need of corroborating the results with the physical meaning. In other words, expert judgement 
should play an instrumental role in key steps of sensitivity analyses. 
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1 INTRODUCTION 

In the nuclear field, safety analyses rely on intensive use of simulation tools. Computer 
codes have been developed and improved during the last decades, and they are now able to 
reproduce complex systems and scenarios. However, uncertainties on code predictions are still 
large and need to be quantified. In this regard, Best Estimate Plus Uncertainty (BEPU) 
methodologies have been extensively applied in the past in conjunction with thermal-hydraulics 
codes [1], [2], but very few studies have been focused on their application to SAs [3], [4].  

In the past three years, the “Management and Uncertainty of Severe Accidents” (MUSA) 
EURATOM project [5] tried to draw the attention to the problem. In particular, SA analyses 
codes (i.e., MELCOR [6] and ASTEC [7]) were combined with Uncertainty Quantification 
(UQ) tools (i.e., DAKOTA [8], RAVEN [9], URANIE [10], and so on) in the attempt to assess 
the uncertainties linked to the simulation results. While UQ analyses do determine (and 
quantify) the uncertainty band, they do not provide any insight into the parameters (features) 
driving it. For this reason, attempts were additionally made to perform a complementary 
sensitivity analysis, with the aim of identifying the input parameters with the highest influence 
on the selected output response/s. However, in the majority of cases [11]–[14], sensitivity 
analysis was limited to Correlation Coefficients (CCs), such as Pearson’s and Spearman’s [15].  

In this framework, the present paper reports an alternative approach for sensitivity 
analysis, based on data analysis: more specifically, supervised Machine Learning (ML). Feature 
Selection (FS) techniques are explored and then applied to a database developed in the MUSA 
project. The database derives from the application of UQ methodologies to the PHEBUS FPT1 
test [16], with the MELCOR code being the SA code selected for the simulation of the scenario. 

2 METHODS 

In statistics and ML, FS techniques are mostly employed to improve accuracy and 
interpretability when developing a predictive model. However, their core nature makes them 
suitable for sensitivity analysis. In fact, FS is essentially the process of selecting the features 
that contribute the most to the target variable/s.  

Generally speaking, there are three types of FS approaches:  
 Filter methods (fig. 1), such as CCs, evaluate the importance of the features as a pre-

processing step prior to model training, independently from the ML algorithm 
selected to construct the model itself. They evaluate whether there is a relationship 
with the target variable considering each feature separately, thereby not taking into 
account feature dependencies;  
 

 
Figure 1: Feature Selection - Filter Methods. 

 Wrapper methods (fig. 2) rely on an iterative process in which different subsets of 
features are tested before selection. However, this optimization process comes with a 
price: wrapper methods are computationally expensive. Considering that, for n 
features, the number of possible subsets is equal to O(2n), the search for all the subsets 
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seems impractical even for moderate numbers of features. In this regard, more 
efficient search strategies have been implemented (i.e., stepwise regression);  
 

 
Figure 2: Feature Selection - Wrapper Methods. 

 Embedded methods (fig.3) include FS and tuning as part of the model construction. 
They aim at maximizing the performance of the learning algorithm while minimizing 
the number of features. In addition, they make better use of the available data, while 
being computationally faster then wrapper methods. 
 

 
Figure 3: Feature Selection - Embedded Methods. 

Considering the initial objective to propose a sensitivity analysis other than CCs, the FS 
techniques explored in this work belong to wrapper and embedded methods.  

As already said, stepwise regression represents an efficient search strategy when dealing 
with wrapper methods. There are three commonly used approaches to stepwise regression: 
backward, forward and bidirectional. A brief description of their operating mode is reported in 
the following: 

 Stepwise Backward Elimination: starting with a model with all the input variables, 
and iteratively removing the least useful variable; 

 Stepwise Forward Selection: starting with a model with no input variable, and adding 
the variable that gives the greatest improvement to the model, one at a time; 

 Stepwise Bidirectional Regression: starting with a model with no input variables, and 
alternating a forward and a backward step. 

For what concerns embedded methods, instead, the most attractive technique with respect 
to FS is the LASSO regularization, whose functioning principle is presented here: 

 LASSO Regularization: adding a penalty to variable coefficients, with the result of 
shrinking some of them to zero, thus eliminating the correspondent variable from the 
model. 

Additional information can be found in [17]–[20]. 
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3 APPLICATION DOMAIN 

The application of the previously mentioned FS techniques to a database is subjected to 
the definition of two parameters: the number of features – “p” – and the size of the database – 
“n”. The number of features is linked to the studied scenario as well as to the addressed 
phenomena, whilst the size of the database is related to the number of successfully performed 
calculations. In this regard, two situations can be encountered: 

 Low Dimensional Problem: the size of the database outnumbers the number of 
features. All four techniques cited before can be applied; 

 High Dimensional Problem: the number of features is higher than the database size. 
In this case, techniques involving the creation of a multiple regression model (such as 
Stepwise Backward Elimination and Stepwise Bidirectional Regression) do not work, 
as reported in [20]. 

When applying the previously mentioned regression techniques to SA scenarios, two 
major constraints are to be faced: the intrinsic complexity of the SA phenomenology and the 
large computational cost of SA codes. The former affects the number of involved features, 
which results to be high. The latter, instead, puts a limitation on the size of the database, which, 
on the other hand, results to be “relatively low”. In fact, when considering sensitivity analysis 
as an additional step after UQ, it is often the case that the number of runs is in the order of 59/93 
(as requested by first order Wilks formula, one-sided or two-sided [21]). In these circumstances, 
the data analysis problem falls very likely within the high dimensional category. 

4 RESULTS & DISCUSSION 

As already said, the database employed to test the proposed data analysis methodology 
for sensitivity analysis derives from the application of UQ methodologies to the PHEBUS FPT1 
scenario. The database is characterized by a number of features equal to 88 (with features 
spanning from material properties and core thermal-hydraulics to aerosol behaviour) and a 
database size equal to 79. The selected targets for this analysis are the Cs released from the fuel 
bundle (as a % of the initial inventory) and the Cs retention in the circuit (as a % of the Cs 
released).  

Being the database size lower than the features’ number, it was possible to apply only 
two techniques, namely the Stepwise Forward Selection (wrapper class) and the LASSO 
Regularization (embedded method).  

Table 1 reports the features selected when considering the Cs released from the fuel 
bundle as target variable. As it can be seen, both Forward Selection and LASSO Regularization 
selected similar features, with the latter singling out a slightly higher number of them. As easily 
understandable, selected features are mostly related to core behaviour, and in particular to: 

 material properties (i.e., density, specific heat, thermal conductivity); 
 heat transfer modes (i.e., Laminar Nusselt number for rod bundle); 
 core inventory; 
 core geometry (i.e., core pitch). 

However, it has to be highlighted that some of the selected features are not “physically 
correlated” with the target variable. In fact, parameters such as the resuspension fraction for the 
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surfaces of the vault top and for the wet part of the condensers are related to containment 
behaviour and hardly relatable with the Cs released from the fuel bundle in the core region. 
This seems to suggest the need for a post-processing screening of the selected feature list in 
order to ensure consistency with the physical meaning of both features and target variable. 

Table 1: Feature Selection for Cs release from fuel bundle. 

Feature Forward  
Selection 

LASSO 
Regularization Feature Meaning 

C1212_2   Laminar Nusselt n. 
rinp1_cor_CD   Core inventory, class Cd 

tfscal_139   CS thermal conductivity 
tfscal_102   Zr specific heat 
tfscal_138   CS specific heat 

fractResuspend_CONDENS_WET   Aerosol resuspension fract. 
rinp1_cor_TE   Core inventory, class Te 

tfscal_104   Zr density 
fractResuspend_VAULT_TOP   Aerosol resuspension fract. 

pitch   Core pitch 
tfscal_166   Spray-coat specific heat 
tfscal_119   Inconel-600 thermal cond. 

 

Table 2, instead, reports the features selected when considering the Cs retention in the 
circuit as target variable. In this case, Forward Selection proved to be greedier with respect to 
LASSO Regularization, with almost twice the parameters selected. Few observations can be 
drawn when looking at these results: 

 some features (such as “chi”, “deldif”, “fractResuspend_RISER_WALL”, 
“fractResuspend_LINE-G”, “fractResuspend_SG-U-TUBE”, AISI 304 and 616 
specific heat) are directly related to the target variable. They, in fact, have an 
influence on what happens in the circuit; 

 some others (such as the ones related to material properties and core inventory) are 
indirectly related to the target variable. They influence the core behaviour, that in 
turn influences the circuit behaviour (and therefore the selected target). This 
outcome shows an inheritance effect, that propagates as the scenario evolves; 

 as for the features selected for the Cs released from fuel bundle, some features are 
not “physically correlated” with the target variable: it is the case of aerosol 
resuspension fraction for surfaces in the containment (i.e., VAULT BOTTOM, 
VAULT TOP, LID TOP, CONTAINMENT WALL, SUMP BOTTOM). Even in 
this case a post-processing screening seems necessary. 

 
 
 
 



1110.6 

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022 

Table 2: Feature Selection for Cs retention in the circuit. 

Feature Forward  
Selection 

LASSO 
Regularization Feature Meaning 

chi   Dynamic shape factor 
fractResuspend_VAULT_BOTTOM   Aerosol resuspension fract. 

tfscal_150   AISI-616-L specific heat 
fractResuspend_VAULT_TOP   Aerosol resuspension fract. 

deldif   
Diffusion boundary layer 

thickness 
fractResuspend_RISER_WALL   Aerosol resuspension fract. 

fractResuspend_LINE-G   Aerosol resuspension fract. 
fractResuspend_LID_TOP   Aerosol resuspension fract. 

fractResuspend_SG-U-TUBE   Aerosol resuspension fract. 
rinp1_cor_BA   Core inventory, class Ba 

tfscal_140   CS density 
tfscal_131   Zirconia thermal cond. 
tfscal_144   SS density 

fractResuspend_CONTAIN_WALL_   Aerosol resuspension fract. 
tfscal_148   AISI-304-L density 

fractResuspend_SUMP_BOTTOM   Aerosol resuspension fract. 

5 CONCLUSIONS 

In the framework of BEPU application to SA-related scenarios, this paper proposes an 
alternative approach for sensitivity analysis, based on supervised ML. Feature Selection 
techniques have been explored to establish a data analysis methodology allowing a deeper 
understanding of the features driving the uncertainty. In addition, FS techniques have been 
tested against a database deriving from the application of UQ methodologies to the PHEBUS 
FPT1 in the framework of the MUSA project. 

Considering the work done, few outcomes can be highlighted: 
 The intrinsic complexity of SAs strongly conditions sensitivity analysis. The 

combination of a high number of involved parameters and of a usually small database 
size results in some FS techniques being screened out; 

 The use of appropriate algorithms can actually help in shrinking the number of 
features, thus improving the interpretability of the model and the identification of the 
variables that responsible for most of the uncertainty on the response/s; 

 The study suggests the need of corroborating the results with the physical meaning. 
In other words, expert judgment might play a key role in both feature selection and in 
the understanding of the results from the sensitivity analysis. 

In short, this prospective study highlights the high relevance of carefully select features 
to make the sensitivity analysis efficient and accurate in determining the governing parameters 
responsible for the FOMs uncertainties. However, notwithstanding the promising outcomes, 
further studies have to be carried out in order to confirm the potential shown in this initial work, 
and to deeper investigate the strengths (and weaknesses) of the FS techniques applied in the 
exercise.  
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