

1014.1

Towards Refactoring Of The TOKES Tokamak Plasma Transient
Code

Leon Bogdanovića, Sergey Pestchanyib, Leon Kosa
aFaculty of Mechanical Engineering, University of Ljubljana

Aškerčeva 6
1000 Ljubljana, Slovenia

bKarlsruhe Institute of Technology
Hermann-von-Helmholtz-Platz 1

76344 Eggenstein-Leopoldshafen, Germany
leon.bogdanovic@lecad.fs.uni-lj.si, serguei.pestchanyi@kit.edu, leon.kos@lecad.fs.uni-lj.si

ABSTRACT

The TOKES ("Tokamak Equilibrium and Surfaces") code simulates numerically
dynamics of the thermonuclear deuterium-tritium (D-T) plasma in ITER core, in scrape-off
layer (SOL) calculates heat flux to the tokamak walls and heat transport inside the solid walls.
It takes into account phase transitions of the wall material, i.e., tungsten (W), including
vaporization. After vaporization start, TOKES simulates dynamics of vaporized W in vacuum
vessel, its ionization and W-D-T plasma dynamics, including photonic radiation. The code
features a numerical meshing out to all wall surfaces with the possibility of spatially variable
grid resolution on the mesh. It includes standard surface interactions such as sputtering, but also
surface vaporization and, importantly, vapour shielding. TOKES has been extensively used for
several years in specific ITER studies, covering in particular simulations of disruption
mitigation by massive gas and shattered pellet injection and the impact of heat fluxes due to
non-mitigated disruptions and ELMs (Edge-Localized Modes), including vapour shielding
effects. The code is also being applied to JET-ILW (ITER-like wall) and to the EU DEMO PFC
design activities considering, in particular the impact of disruptions and sacrificial limiters.
Compared with more conventional boundary codes, it has the advantage of rapid run times,
permitting extensive parametric studies even at the reactor scale like required in the DEMO
design phase. Developed over almost two decades at KIT, the source code of TOKES in Pascal
is still compiled in Delphi, a commercial Integrated Development Environment (IDE), under
Windows on single machines. For the benefit of TOKES preservation and availability to the
fusion community, refactoring of its source code to an open-source solution is needed. This
paper presents the progress on TOKES code refactoring under Free Pascal on Linux as well as
some examples of simulation results visualization in a prototype Graphical User Interface
(GUI).

1 INTRODUCTION

The TOKES code was developed in the last two decades at Karlsruhe Institute of
Technology (KIT) aiming at an integrated simulation of plasma equilibrium states and surface
processes in tokamaks, what its acronym actually reflects: "TOKamak Equilibrium and
Surfaces" [1]. There are several publications that describe the features of TOKES and its
capabilities of applications for the future tokamaks ITER and DEMO, e.g., simulation of plasma
shielding effect during disruption, simulation of gas and pellet injection for disruption

1014.2

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022

mitigation and simulation of the impact of unmitigated disruptions on sub-dome structure in
ITER operation ([2], [3], [4]), as well as validation of vapor shield simulations against plasma
gun experiments [5]. To secure the continued deployment of the TOKES code and its
availability to a wider fusion community, refactoring from commercial Delphi Pascal [6] to an
open-source solution, e.g., Free Pascal, is essential.

2 ORIGINAL TOKES SOURCE CODE AND PROGRAM

2.1 Basic features of TOKES

For TOKES the toroidal symmetry is assumed, which its models keep as a basic feature
of the tokamak principle. The code simulates plasma evolution in time t. The plasma stays in
some slowly changing equilibrium with the confining magnetic field. The evolution of the
confinement equilibrium occurs due to internal dissipative processes in the plasma, such as the
diffusion across the field lines, and variations of external parameters, such as the Deuterium-
Tritium (DT) inflow. The intermediate states are described with diverse functions of cylindrical
coordinates, r and z, where z is the coordinate along the axis of toroidal symmetry and r the
distance from the z-axis. Another important frame in TOKES is magnetic flux coordinates. At
t approaching infinity, this 2D system may eventually reach a steady equilibrium state. Such
final state is not essential, and TOKES can simulate in many details non-steady tokamak
processes. The simulation involves dynamical changes of plasma shape and actual electric
currents both in plasma and in external coils of poloidal magnetic field (PF coils) that control
the stability of the whole configuration in respect to toroidally symmetric modes. The virtual
tokamak of TOKES assumes a lexicon of real physical processes that can naturally be used. In
this context, TOKES steadily "creates" hot DT plasma by fuelling a confinement region (the
core) inside the tokamak vessel with DT atoms. The fusion
reaction produces helium ions, fast neutrons, and heat.
Impurities from the vessel wall contaminate the plasma. The
code simulates impurity ions in the whole vessel as it does for
the main plasma components, with a common multi-fluid
plasma model for all species. The plasma diffuses across
nested magnetic surfaces of the trap to the periphery of the
core. Then it passes a narrow scrape-off layer (SOL), i.e., the
core’s shell, and dumps along magnetic field lines onto vessel
walls. The wall surface also absorbs the electromagnetic
radiation from the plasma, neutral atoms and the neutrons as
well. The surface responses to the impact, backscattering
impacting ions and emitting sputtered atoms and, if the load
is very large, the vapour of wall material. The erosion
products, which are emitted atoms of wall materials, freely
propagate in the vessel before having been ionized in SOL
and the core. For more efficient simulations of fast transient
processes, like ELMs and disruptions, TOKES uses an
assumption that the magnetic configuration does not change
during one or a few milliseconds of the transient. In the
original mode with magnetic configuration evolution the code
calculates the evolution during the ramp up until reaching a
steady state [1]. Figure 1: TOKES source code.

1014.3

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022

2.2 Structure of the original TOKES source code in Delphi Pascal

The original source code of TOKES is contained in the code subdirectory of
TOKES/TOKES1504_DivITER, as displayed in the tree structure on Figure 1. It consists of Delphi
units and forms for the Graphical User Interface (GUI) of the application in MS Windows
(Table 1) and units of Pascal code (*.pas), which are basically the core for TOKES calculations
(Table 2). This code is compiled and built with Delphi into an executable. The executable needs
input data from the Data directory as well as from the data subdirectory. The device data is
contained in the ITERa subdirectory of data/MGI3.

Table 1: TOKES GUI units

Unit name Description
GraphicU functions and routines for GUI operations
UInterfa code for main form of TOKES
ShowU code for secondary (showing) form of TOKES

Table 2: TOKES core units

Unit name Description
BaseLibU basic data types
ComplexU complex data types, elementary functions of complex

variables, Fourier transforms
FunctioU function definitions
GeometrU 2D and 3D geometry, circles, linear algebraic equations
GraphU graph algorithm
ListU list operations
PhysicsU plasma physics
UAtoms database of physical constants of the atoms
UCrosdif plasma diffusive transport across magnetic surfaces
UField calculation of toroidally symmetric magnetic field both

inside and outside the tokamak vessel
UGround main unit of TOKES
ULongit longitudinal transport of magnetized plasma
UPlasma plasma implementation
UProcess process
URays transport of neutral rays in the vessel
UTask_MGI3 user task in TOKES
UVessel triangle meshes and magnetic flux coordinates inside

tokamak vessel
UWall wall definition and coordinates as well as processes inside

the wall

1014.4

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022

2.3 Performing simulations with the original TOKES application

After starting the executable and clicking on the Task button at the bottom of the window,
the Start.txt input file is displayed (Figure 2). This file contains the input parameters for the
TOKES simulation and the output directory definition where the results are stored. The user
can change these parameters and save them. By clicking on the Start button, TOKES is
initialized with the chosen parameters. The simulation is started by selecting Tools and then Run
in the menu bar. The user can observe the simulation running in the main window, i.e., the
current time step and total time of simulation, some parameters shown on the graphs and the
tokamak vessel displayed (Figure 3). The simulation can be stopped by selecting Tools and then
Stop in the menu bar or by clicking on the total time label. From logs, which are automatically
produced, simulations can be resumed if they have been previously stopped or the executable
crashed for any reason.

Figure 2: Input parameters for a TOKES simulation.

1014.5

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022

Figure 3: A running TOKES simulation.

2.4 Analysing TOKES simulation results

A separate application, the vw2DFMC viewer, which is also coded and compiled in
Delphi, is used to analyse TOKES simulation results. Results are stored in *.P2DT files, e.g., at
every 50th time step, if Save step = 50 is set in Start.txt. The user can open either single or
multiple results files, depending on the analysis performed with the viewer. Generally, single
files are used for displaying 2D plots of the parameter of interest in the tokamak vessel region,
while multiple plots are used for time dependent analysis or distributions along the wall for the
chosen parameter.

3 REFACTORING OF THE TOKES CORE AND VIEWER SOURCE CODE

By definition, code refactoring is the process of restructuring existing computer code
without changing its external behaviour. In this regard the core of TOKES in Pascal for
calculations/simulations will be preserved, while the GUI will be replaced according to the
open-source solution used. The functionality of the vw2DFMC viewer, which is currently a
separate program, is planned to be included in a single refactored TOKES program/application
for simulations and visualizations. In this paper first attempts at refactoring of current separate
programs in Lazarus are presented. Lazarus is an open-source Delphi compatible cross-platform
Integrated Development Environment (IDE) for Rapid Application Development. It has variety
of components ready for use and a graphical form designer to easily create complex graphical
user interfaces. It runs on Windows, macOS, Linux and many other platforms [7]. Lazarus uses
Free Pascal as its language which is an Object Pascal dialect [8].

1014.6

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022

3.1 First attempt at refactoring of the TOKES core

While Lazarus is a Delphi compatible IDE, automatic conversion from a Delphi project
to a Lazarus project seldom works. This is also the case for the TOKES source code, hence the
best approach for porting the TOKES core from Delphi is to create a new project in Lazarus
with appropriate GUI forms and then include the Pascal units (see Table 2) into it. Also, some
differences in linking and compiling the source code exist, e.g., in Lazarus the included files
are set under Compiler Options > Paths > Include files, while in Delphi under Delphi Compiler >
Search path. When porting Delphi source code to Lazarus one should also set Delphi (-MDelphi)
under Compiler Options > Parsing > Syntax mode.

The GUI of the TOKES core application in Lazarus is shown on Figure 4. Its structure
follows the structure of the original TOKES application (Figure 2), although many graphical
elements (display of the tokamak vessel and graphs during the simulation) are omitted.

Figure 4: TOKES core GUI in Lazarus.

Currently, only the start of the TOKES simulation in the TOKES core application in

Lazarus is implemented, i.e., the application produces the result file at the start of the simulation
(t = 0). Simulation runs will be implemented in a future version.

3.2 First attempt at refactoring of the TOKES viewer

The vw2DFMC viewer was refactored with the same approach as the TOKES core.
Figure 5 shows the GUI of the TOKES viewer. Currently, only the 2D plot type menu is
implemented.

1014.7

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022

Figure 5: TOKES viewer GUI in Lazarus.

Selecting 4 – D+T density from the menu for a previously chosen result input file produces

the result shown on Figure 6 (a). In a future version of the TOKES viewer, also time dependent
visualizations will be implemented (Figure 6 (b)).

(a) (b)

Figure 6: TOKES results of unmitigated disruptions for 350 MJ initial plasma energy in
ITER. (a) D+T density in the tokamak vessel region at end of simulation. (b) Time dependent

maximum melt depth in the tokamak wall.

4 CONCLUSION

First attempts at refactoring of the TOKES Tokamak Plasma Transient Code with
Lazarus, an open-source solution, were presented. The first versions of the TOKES core and

1014.8

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022

TOKES viewer, although far from being complete and hence not really a replacement for the
original codes, show that TOKES can be ported from Delphi Pascal to Free Pascal. Future
versions are planned which will include all the capabilities of the original codes. While the
Lazarus IDE is a viable alternative to the commercial Delphi RAD for porting the TOKES
source code to other platforms, such as Linux, also other solutions or approaches will be
investigated. One such approach is to retain the core units (backend) in Pascal, while developing
the interface (frontend) with Python graphics libraries, such as PyQt or PySide.

ACKNOWLEDGMENTS

The author LB is supported by EUROfusion Engineering Grant EEG21-19 "Refactoring
and deployment of the TOKES tokamak plasma transient code".

REFERENCES

[1] I. S. Landman, "Tokamak code TOKES. Models and implementation",
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche
Berichte, FZKA-7496 (September 2009).

[2] S. Pestchanyi, R. Pitts, M. Lehnen, "Simulation of divertor targets shielding during
transients in ITER", Fusion Engineering and Design, Vol. 109-111, Part A, 2016, pp.
141-145, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2016.02.105.

[3] S. Pestchanyi, et al., "TOKES simulations to compare gas and pellet injection for
disruption mitigation in ITER", Fusion Engineering and Design, Vol. 136, Part A, 2018,
pp. 29-33, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2017.12.016.

[4] S. Pestchanyi, et al., "Simulations of Energy Loads and their Mitigation during
Disruptions and Runaway Electron Formation in ITER, Part-1: TOKES Simulations",
Final Report of Work incl. Final Conclusions & Recommendations (incl. work on
VDEs & Vapour Shielding), KIT Document Ref. No. MOD-PEW-145842-RD-2D04
(November 2020).

[5] S. Pestchanyi, R.A. Pitts, V. Safronov, "Validation of TOKES vapor shield simulations
against experiments in the 2MK-200 facility", Fusion Engineering and Design, Vol.
124, 2017, pp. 401-404, ISSN 0920-3796,
https://doi.org/10.1016/j.fusengdes.2017.02.048.

[6] Delphi: a software product that uses the Delphi dialect of the Object Pascal
programming language, https://www.embarcadero.com/products/delphi, 2022.
Accessed: 2022-08-16.

[7] Lazarus: a Delphi compatible cross-platform IDE for Rapid Application Development,
https://www.lazarus-ide.org/, 2022. Accessed: 2022-08-16.

[8] Free Pascal: an open source Pascal compiler, https://www.freepascal.org/, 2022.
Accessed: 2022-08-16.

	ABSTRACT
	1 INTRODUCTION
	2 ORIGINAL TOKES Source code and PROGRAM
	2.1 Basic features of TOKES
	2.2 Structure of the original TOKES source code in Delphi Pascal
	2.3 Performing simulations with the original TOKES application
	2.4 Analysing TOKES simulation results

	3 REFACTORING OF THE TOKES CORE AND VIEWER SOURCE CODE
	3.1 First attempt at refactoring of the TOKES core
	3.2 First attempt at refactoring of the TOKES viewer

	4 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

