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ABSTRACT 

In fusion and fission reactor design and analyses, CAD (computer-aided design) models 
are usually the staple when it comes to geometry preparation. However, preparation of these 
models is often a time-consuming process requiring a significant amount of CAD designer time. 
Furthermore, this process is usually cyclical, where a design evolves through several iterations 
based on the results from various analyses. This begs the question; can such models be created 
using less user time and are such computer-generated models practical for use in neutronic 
simulations.  

This paper focuses on describing the methods behind and usage of a parametric modelling 
tool called STOK, a Python-based program that allows parametric generation of simple 
tokamaks with rectangular cross-sections. These models are generated using sets of parameters, 
for instance, the vacuum vessel requires the user to define five parameters and when all the 
required parameters are defined a model is created using these parameters as constraints. 
Furthermore, intersections and other foreseen geometrical conflicts between components are 
automatically resolved, e.g., ports into the tokamak automatically introduce suitable openings 
into the shape of the vacuum vessel. Once the model is complete its components are exported 
in .step and .stl formats which can be directly used in neutronic simulations or can be converted 
using translators into a suitable format for use in simulations, e.g., through conversion into 
constructive solid geometry (CSG) commonly used in Monte Carlo codes for nuclear analyses. 
With these two methods we can perform cross-comparisons between different neutron transport 
codes like MCNP and Serpent for a set of significantly different geometries in an automated 
fashion, verify and benchmark different methods of geometry import into these codes, e.g., 
defining geometry with CSG in Serpent and importing it directly as .stl files to quantify the 
differences in both results and simulation efficiency, and work on automating reactor design 
optimization.  
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1 INTRODUCTION 

Reactor design is very time consuming both in fusion and fission. In these fields CAD 
models are usually used for geometry preparation, but creating and adapting these models for 
use in analyses takes time, which could be used for analyses. As the design process is cyclical 
with multiple iterations where geometry changes are based on feedback from various analyses 
performed to test how well the design meets design requirements, e.g., structural, nuclear and 
thermohydraulic. The time spent for model preparation and adaptation for use in analyses can 
represent one of the bottlenecks in design optimization due to copious amounts of analyst time 
involved in these processes. 

We approached the problem of expediting reactor modelling through automation with 
help from a Python [1] CAD-scripting library named CadQuery (CQ) [2]. Based on this library, 
we developed STOK [3], a Simple rectangular TOKamak generator that focuses on production 
of simple parametric reactor models that are often required for more fundamental analyses 
where simplicity of geometry is an advantage. A tool for generation of more realistic tokamak 
models is already available, i.e., Paramak [4]. 

This paper focuses on describing the methods behind and usage of a parametric modelling 
tool called STOK and presenting the benchmarks that were run for the purpose of validating 
this type of geometry generation for future projects which will be done on more complex reactor 
models of more up to date designs. 

2 STOK 

STOK is a tool created for speeding up geometry generation and, in the future, to test 
multi-parametric optimization algorithms for use in reactor design optimization. It is based in 
Python and is using an open-source CAD-scripting library called CadQuery to produce the 
geometry. 

2.1 CadQuery 

CQ is a Python library that gives the user the tools to create CAD models through 
scripting. Although it is written in Python its origin stems from Open CASCADE [5], which is 
a vast library of CAD design functions written in C++. Open CASCADE is complex, so CQ 
was made as more of a simplification while at the same time keeping much of the functionality 
of its parent library. Due to its ease of use this tool is very suitable for use in reactor geometry 
preparation. 

2.2 How it works 

In STOK components were generated, by first analysing their base geometry and finding 
the most basic shapes that they can be created from. We then created a basic shape that can be 
changed with some parameters, relevant to each object. From there, more complex components 
were created and parametrized to conform to the given larger design. 

For example, the outer most layer of the tokamak wall (called layer 1 in Figures 1 and 2) 
was created by first deducing that this object can be created with two rectangular tori, one small 
and one large, and that the larger of the tori needs to have the inner radius equal to the radius 
of the central solenoid as well as conforming to the outer radius of the containment of the model. 
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A function was created that generates a torus with the following parameters; inner radius, outer 
radius, and the height of the torus. 

 
Figure 1: Outer torus with parameters. 

 This function was then used to generate both the larger and the smaller torus, where the 
parameters of the function conformed to the reactor model design. After we generate both tori, 
the smaller one is subtracted from the larger one resulting in a hollow torus that is used as the 
first layer of the reactor wall. The process is similar for other layers only differing in the values 
of the parameters used.  

 
Figure 2: Torus with opening cut. 

After all the reactor layers are complete, the port openings have to be added, which is 
modelled in a comparable way to the reactor layers. First a function is called that creates a box-
like object and moves it to an appropriate radius. For the model presented in this paper this 
function is then used eight times to create eight rectangular boxes at of a certain length, width, 
and height. Each subsequent box is created with an offset from the previous one for forty-five 
degrees and moved outwards to the position of the outer radius of the first containment layer. 
When this is done, a subtraction is performed to remove the parts of reactor layers that overlap 
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with the boxes that represent the openings. The resulting reactor layer objects thus have holes 
in them to accommodate the reactor openings. Other parts of the geometry like central solenoid, 
detector cells, and transformer limbs are produced in the same fashion. 

The most time intensive part of the reactor design is thus to find out and implement all 
the types of components that need to be included in a reactor model. Once this is done the 
models can be produced by simply combining these components and removing any overlaps 
with the use of an in-built function.  

The last step of the model preparation process is then to export the geometry in a suitable 
format, e.g., into .stl for use in Serpent. Here we experienced some issues with the use of CQ 
generated .stl files in Serpent, the files seemed to be “leaky”, meaning they had holes in the 
geometry definition of the .stl files and serpent therefore reported errors/inconsistencies in the 
geometry. We solved this using FreeCAD for conversion from CQ-generated standard CAD 
format .step into .stl. In the future we aim to utilize a different meshing library like Gmsh [6]. 

2.3 Use of STOK 

STOK is used through a series of configuration files with which we control the parameters 
defining the dimensions of reactor components. For example; in Figure 3 is the configuration 
file used to define the transformer limbs and the spheres next to them. At the top of the file are 
the general parameters that are usually set once and can stay the same and under the line of 
hashtags (#) is the configuration specific to each limb individually. 

 
Figure 3: Transformer limb configuration file 

After we set all the configuration files the generator is run through Python. STOK can 
optionally insert itself into lines of existing Serpent input files, but that feature is still under 
development. The idea is that as STOK prepares the folder containing the files describing the 
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geometry defined by configuration files and it also injects the links to these files and defines 
the materials of each component directly into Serpent input file. 

Each of these elements was created with the other in mind, meaning that if one of the 
parameters of the input changes, the others change as well. A nice example of this are the 
containment layers themselves. Let’s say that the user originally defined the outer most 
containment with an outer radius that was too large. In STOK, by changing a single parameter, 
the whole model can be shrunk for the discrepant amount, saving the time of changing each 
layer individually. 

This comes with the cost of longer base model development times, mainly because every 
reactor component has to be defined in parametric fashion and then also appropriately 
positioned relative to the other objects to ensure the model does not overlap and the 
inconsistencies are not created. However, the benefit of this method is in its ability to either 
make minor adjustments to the geometry or completely change every parameter of the reactor 
in a short amount of time. Furthermore, any needs for inclusion of models that are not 
parametric can be met with the use of functions where parametrically defined geometry can be 
injected into an existing Serpent input file. 

At this point the main focus of the development was on the side of parameter definition, 
model quality and on making sure that the produced models reliably work with Serpent. We 
realised that the tool needs improvement in terms of ease of use and in terms of interfacing with 
other codes to streamline generation of larger number of models. These challenges will be 
addressed in the future revisions of the tool that will be more focused on interfacing with tools 
for automation of design optimization or for parametric analyses. 

2.4 The model geometry 

The model used in testing presented in this paper was that of a simple tokamak with 
rectangular vertical cross-section, featuring seven layers and one layer of empty space, a central 
solenoid spanning from the bottom of the outer containment layer to the top of the outer 
containment layer, eight transformer limbs positioned radially outwards from the centre of the 
solenoid each being accompanied by two spheres, that represent ex-vessel detectors. Openings 
were cut in each containment layer that represent ports. These ports are offset from the 
transformer limbs by twenty-two point five degrees respectively, as shown in Figure 4. The 
model is based on the simplified JET-like reactor model that has proven to be useful in code 
testing [7] and in analyses used to better understand the behaviour of detectors in complex 
simulations such as calibration of JET’s neutron yield detectors [8].  
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Figure 4a and b: Orientation and numbering of reactor geometry and slice views. Horizontal 

(left) and vertical (right) cross-section.  
Furthermore, the whole reactor is surrounded by a cylindrical model of concrete walls 

around the reactor and a bounding box that represents the outer boundaries of the model. The 
walls and the bounding box are not shown in the figure. 

These components were used to benchmark the reactor, the results of which can be seen 
in the next section. Although only the above-mentioned components were used in this first 
benchmarking, more components were designed and included in the code for later use in more 
complicated reactor models. Most notable of which are equatorial limiters, that are designed to 
fill the ports with limiter like structures and a rectangular plasma object that is meant to be used 
as a neutron source cell in neutron transport codes 

3 STOK COMPUTATIONAL BENCHMARKING 

3.1 Model complexity analysis 

In the STL (.stl) format every object is described with a mesh of triangles that describes 
the surfaces of the geometry. The accuracy and fineness of this mesh can be fine-tuned 
depending on the needs of the analyses. Using a basic meshing algorithm one can adjust the 
maximum angle at which two adjacent edges of the triangle facet can be joined as well as 
adjusting the deviation between the triangle edge and the real surface edge. In our testing of the 
effect of the use of different meshing parameter values, we only changed the latter. 

In addition to benchmarking the geometry, a comparison of pre-processing and 
computational time was performed. The geometric model was exported from STOK in meshes 
of increasing fineness via the STL file format (i.e., the deviation was decreased resulting in 
more triangles) and run in Serpent with the same settings applied throughout the four test cases. 
The maximum deviation was set to 1 mm, 0.1 mm, 0.01 mm and 0.001 mm respectively. The 
second parameter that could be changed, i.e., the maximum value between adjacent edges, was 
kept at a default value of 0.5235988 radians or 30°. 

We observed a steady shift of pre-processing and calculation times between all levels of 
fineness, as seen in Table 1.  
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Table 1: Number of triangles to describe the geometry, pre-processing time to export .stl files 
and simulation time for 108 particles on a dual Intel Xeon Gold 6238R based CPU node. 

Edge 
deviation 

Nr. of triangles Pre-process time [sec] 
(single core) 

Simulation time 
[hours:min:sec] (1 CPU node) 

1mm 104 568 57 1:40:26 
0.1mm 880 816 76 2:23:52 
0.01mm 8 279 384 435 4:25:26 
0.001mm 8 763 424 623 12:37:54 

 
Although these pre-process and simulation times vary significantly, the fluxes, observed 

in the spherical detectors around the model, are consistent for 0.1 mm, 0.01 mm and 0.001 mm, 
more detailed description can be seen in Figure 5. Of the tested cases only the 1 mm case shows 
significantly different results. The origin of this discrepancy is not clear as the effect of 
component sizes and shapes was not expected to be sensitive to modelling discrepancies of such 
size. Further investigation is needed to understand this potential issue.  

 
Figure 5: Complexity analysis. 

As we can see, the complexity of the .stl file only affects processing and pre-processing 
time while the results are consistent once the geometry is described in sufficient detail 

3.2 Computational benchmarking vs MCNP 

Neutron fluxes were calculated using two neutron transport codes, Serpent 2.1.32 [9] and 
MCNP5 v1.60 [10]. Tallies used were, in MCNP 5, the F4 tally, which calculates track length 
estimates of the neutron fluence averaged over the cell of interest, and in Serpent a neutron flux 
detector. These tallies/detectors are made to calculate the same thing i.e., neutron flux. 

In both transport codes, the same materials and material mixtures were used, furthermore 
to minimize a possibility for errors the same cross-section datafiles based on FENDL-3.1 were 
used. If a nucleus was missing from this library, i.e., some of the contents of the concrete walls, 
it was substituted for the same element in JEFF 3.3. 



1008.8 

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 12 – 15, 2022 

Three input files were created: 

• MCNP: The first was an input file generated by the SuperMC [11]. Using its .step to 
CSG converter we were able to recreate the designed model in MCNP geometry. 

• Serpent STL: The second of the input files was created in Serpent using the built in .stl 
import function with STOK generated geometry files. 0.1 mm deviation was used. 

• Serpent CSG: The third input file was created by converting the input file of MCNP 
with a conversion script that converted the MCNP input to a Serpent CSG input. The 
script was provided by Serpent developers but is not an official conversion tool. 

The neutron source used in these analyses was a point source of 14.1 MeV found inside 
the vacuum vessel as shown by a red square in Figures 4a and b 

3.3 Benchmark results 

To confirm that the geometry of the model is indeed consistent between CSG and STL, 
we first had to figure out that the volumes of the detectors are consistent between the two 
Serpent codes, so we compared them with the same volumes calculated by a CAD program, for 
this we chose SpaceClaim [12]. The results between SpaceClaim and Serpent were comparable 
for reference we also did the same with MCNP which yielded comparable results (Figure 6). 

 
Figure 6: Detector cell volume comparison between SpaceClaim, MCNP and Serpent 

The Serpent code does deviate from the norm at the first and last detector but the 
discrepancy is negligible.  
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So far, the results of the three code comparisons were inconsistent with differences 
between the three codes ranging up to 20% for detector positions furthest from the source. This 
clearly shows inconsistencies in either the geometry generated or in the configurations of the 
three codes so further investigation is required. 

  
Figure 7: Flux comparison between MCNP, Serpent STL and Serpent CSG 

CONCLUSIONS AND FURTHER WORK 

Parametric modelling can represent a faster way to produce models for some applications 
in fusion and fission reactor design but it cannot solve all difficulties with modelling and is not 
suitable for all modelling needs. However, once a parametric model is created, it can be 
significantly faster at making small adjustments to the geometry and this process can even be 
automated. The downside of such modelling is that the time it takes to create such model or a 
family of models is typically longer than creating a single model in a traditional way. 

In this paper we described how a tool called STOK produces simple tokamak models for 
use in neutronics simulations. We show that increasing the resolution beyond a threshold where 
a geometry is captured sufficiently does not change the results. However, the computational 
time required for pre-processing and neutron transport is significantly increased for more 
complex models featuring larger geometry files with more triangles. At the same time, we 
observed that decreasing it over a certain edge length of the triangles yields significantly 
different results in regards to neutron flux. These results are likely less correct so care needs to 
be taken to make sure the geometry description is sufficiently detailed. 

We also observed that the calculated neutron flux shows inconsistencies with MCNP. 
Further work is needed to find the origin of these discrepancies and try to resolve them 
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