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ABSTRACT

Hybrid multiphase models recently become more established for numerically describing
complex gas-liquid flows, combining two different numerical methods for distinct flow regimes.
Both edge cases are proven to be capable of delivering reliable predictions. In order to improve
the reliability for intermediate length scale ratios of grid size and interfacial structure, a proce-
dure is proposed to classify interfaces by surrounding flow type and level of under-resolution.
With this information the hydrodynamics in the interface region are controlled by means of a
dedicated interfacial drag formulation in order to improve simulation results across several lev-
els of spatial resolution. The functionality is demonstrated in a three-dimensional case of a gas
bubble rising in stagnant liquid.

1 INTRODUCTION

Gas-liquid flows in industrial facilities generally show a broad range of length scales.
For the predictions of those phenomena, hybrid multiphase models are being developed during
the past years, e.g. [1, 2, 3, 4, 5]. The approach by Meller et al. [5] is described as hybrid
multifield two-fluid model and will be the conceptual basis for the present work. The Euler-
Euler model for small interfacial structures compared to the grid spacing is combined with a
Volume-of-Fluid-like approach, capturing highly resolved interfacial structures. In both edge
cases, i.e. very low and very high spatial resolution, the individual base models are proven
to work as intended. For the Volume-of-Fluid-like mode of the present model the equivalence
to the homogeneous model was demonstrated [5] and for the Euler-Euler mode, the model
validation of Rzehak et al. [6] is named exemplary.

While the phase-specific velocity fields generally differ from each other (slip) in the
regime of the Euler-Euler model, by definition no interfacial slip takes place in the fully re-
solved Volume-of-Fluid-like mode of the hybrid model, i.e. the individual phases stick together
and move with the same velocity under all circumstances. In order to predict the dynamics of
interfacial gas-liquid flows with intermediate spatial resolutions, the amount of interfacial slip
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shall be controlled locally. Considering a rising gas bubble, which is poorly resolved, the lateral
parts of the interface are associated with the interfacial shear layer and might undergo interfa-
cial slip, i.e. locally phase-averaged gas and liquid velocities may differ considerably from each
other. At the same time, at the top and bottom regions the gas velocity and the liquid velocity
are very similar to each other, i.e. a no-slip condition is maintained between gas and liquid.
To reflect these essential local differences, the present work focuses on the classification of the
interface-surrounding flow. A measure is proposed for the degree of spatial under-resolution,
which is similar to the well-known dimensionless wall-normal cell size in shear boundary layers
of wall-bounded flows. This information is then used to control the amount of interfacial slip
by means of a dedicated drag model for the interfacial momentum exchange. Functionality is
demonstrated in a three-dimensional test case of a single gas bubble rising in stagnant liquid.

2 NUMERICAL METHOD

The hybrid multiphase model is based on the multifield two-fluid model [5]. The term
two-fluid underlines the fact, that this work is based on the assumption of two (or more) inter-
penetrating continua. Individual physical phases might be described as a set of different numer-
ical phases, which is expressed by the term multifield. For instance, gas is either be described
as a continuous gas or as a dispersed gas, i.e. gas bubbles. The phase-averaged Navier-Stokes-
Equations [7] consist of a continuity and a momentum balance equation for each individual
phase α as shown in Eqs. 1 and 2, respectively.

∂trαρα + ∂irαραuα,i = 0 (1)

∂trαραuα,i+∂jrαραuα,iuα,j = −rα∂ip+∂j2rαµαSα,ij+rαgiρα+
∑
β 6=α

rασαβκαβnαβ,i+fα,i (2)

The phase-specific volume fraction, density, and viscosity are denoted as rα, ρα = const ,
and µα = const , respectively. The phase-averaged velocity vector is uα, p is the pressure,
shared between all phases, and g denotes the vector of gravity. The symbols σαβ , καβ and
nαβ denote the surface tension coefficient of the phase pair α and β, the curvature, and the
normal vector of an interface, respectively. The phase-specific shear-rate tensor is Sα,ij =
1
2

(∂iuα,j + ∂juα,i)− δij 13∂kuα,k. The vector of interfacial momentum exchange is denoted fα.
The equations are spatially discretised with a second order finite volume method and inte-

grated in time with a semi-implicit Euler-scheme of first order accuracy. An interface compres-
sion term [8] is applied to the phase-fraction transport equations. Pressure-velocity coupling
is realised via the Compact Momentum Interpolation Method [9]. The hybrid model is imple-
mented in the multiphaseEulerFoam framework of the foundation release of the C++ library
OpenFOAM [10]. The hybrid multiphase model is available under GPL license [11].

3 DETECTION OF UNDER-RESOLVED INTERFACE REGIONS

The basic idea is to assess the near interface shear flow in terms of the relative phase-
specific velocity and of the interface orientation. The length scale of the computational grid
cells is then related to a dimensionless shear-based length scale in the interface region, simi-
larly to the dimensionless wall distance y+ = y/Lτ in wall-bounded flows with wall-normal
coordinate y and shear length scale Lτ [12]. In order to formulate such a measure, three dif-
ferent pieces of information are required: 1. the interface vector: Iαβ = rβ∇rα − rα∇rβ , 2.
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the phase-specific velocities of phase α: uα and 3. of phase β: uβ . As typical for an algebraic
Volume-of-Fluid(-like) method, i.e. one edge case of the utilised hybrid model, the interface is
spread out across several grid cells. Hence, the three quantities named above are most mean-
ingful in different locations across an interface region, i.e. locations where 0 < rα < 1. That
means, that the most reliable values are found in the centre of the interface region (1.) and at
both sides of the interface, where either phase α (2.) or β (3.) are present. To make the re-
quired information available all across the finite interface region at a certain interface position,
a transport of these quantities has to be realised. This is achieved via an iterative procedure, by
which the information are transported step-wise across neighbouring grid cells along the neg-
ative gradient of each individual distribution of meaningfulness, i.e. −∇|Iαβ| (1.), −∇rα (2.)
and −∇rβ (3.). In the course of this work, the procedure is repeated five times. The quantities
resulting from this algorithm are denoted with superscript IF.

Finally, a meaningful value for each quantity of interest (1. to 3.) is available at each cell
in the interface region. It is worth noting, that the procedure strictly avoids to gather velocity
information from within the interface region because this is the region to be controlled. Instead,
it clearly determines values related to positions very close to both sides of the interface. These
are the proper values to control the interface region.

The relative flow field surrounding an interface region can be classified by its direction
relative to the interface normal vector. One of two extreme cases is stagnation flow, in which
the relative velocity between both fluids is directed perpendicular towards or away from the
interface. The other extreme case is a shear flow, where both liquids have a relative flow velocity
parallel to the interface. The degree of shear is expressed as the shear flow indicator according
to Eq. 3.

ψIF =
|uIF
α − uIF

β × Iαβ|
|uIF
α − uIF

β ||Iαβ|
(3)

The indicator might take values between zero and one for flow types other than stagnation
or shear, depending on the angle between relative velocity and interface normal. In order to
estimate the degree of spatial under-resolution, the dimensionless interfacial cell size is defined,
analogously to the theory of boundary layers in wall-bounded flows as shown in Eq. 4.

y+IF =

1
|IIFαβ |

L∗
(4)

The inverse of |IIFαβ| is a rough approximation for the interface thickness and is based on
the assumption, that the phase volume fractions are distributed linearly across the interface.
Analogous to the viscous length scale in wall bounded flows [12], the shear length scale L∗

is calculated from the relative interfacial velocity uIF
α − uIF

β and the interface normal vector
IIFαβ , which are obtained as described before. As for wall-bounded flows, it is assumed, that
a dimensionless interfacial cell size y+IF < 1 indicates a complete resolution of the shear
boundary layer, meaning, that all relevant velocity gradients are captured on the computational
grid. The larger this quantity, the higher is the assumed degree of under-resolution. Based
on both the shear flow indicator ψIF and dimensionless interfacial cell size y+IF, the under-
resolution indicator is proposed in Eq. 5.

fUR =

{
ψUR

(
1− e1−y+IF

)
, if y+IF > 1

0 , otherwise
(5)
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This quantity becomes one in case of a fully under-resolved shear flow at the respective
interface position. If the flow is either of stagnation type or considered fully resolved, the
indicator takes the value zero. For other cases, fUR might take values between zero and one.

4 ADAPTIVE DRAG MODELLING

Based on the proposed criterion for detecting under-resolved interface regions, an adap-
tive drag formulation is derived. In order to achieve tight coupling of phase-specific velocity
fields for resolved interfaces (Volume-of-Fluid-like mode of the hybrid model), the interfacial
drag formulation of Štrubelj and Tiselj [13] is adopted. From now on, this drag model is referred
as resolving drag model, which is indicated by the superscript R for the drag coefficient KD,R.
The relaxation time in this model formulation is set to 10−8 times the physical time step, which
results in a negligible relative velocity between phases α and β. The two-fluid model collapses
towards the homogeneous model in case of an infinite drag coefficient, which is shown analyti-
cally [14]. This functionality is demonstrated in the context of the currently used hybrid model
approach [5].

Considering a fully under-resolved rising gas bubble, the integral drag formulation con-
sidering a drag coefficient Cd [15] has turned out to be a valid approach for the interfacial drag
coupling [16]. This constant is proposed to be set to Cd = 0.22 in order to reproduce consistent
bubble rising velocities [16]. With the hybrid model formulation under investigation, this turns
out to predict disintegration of a gas bubble on coarse computational grids. A value of Cd = 0.8
has shown to be better suited for this kind of problem and, hence, is used hereafter. This drag
model is called under-resolving drag model and the according drag coefficient is marked with
the superscript UR for drag coefficient KD,UR.

As the values of both drag formulations named above span several magnitudes, a simple
linear interpolation appears to be inappropriate. In analogy to the electrical conductivity, linear
combination of inverse drag coefficients results in Eq. 6.

KD =
KD,URKD,R

KD,UR + fURKD,R
(6)

This formulation effectively blends between the resolving drag formulation for fUR = 0
and the under-resolving one for fUR = 1. The formulation is referred as resolution adaptive
drag model.

5 APPLICATION TO THREE-DIMENSIONAL RISING GAS BUBBLE

In order to assess the framework of interface classification and adaptive drag modelling as
described before, a three-dimensional test case is selected, which is proposed by Adelsberger et
al. [17]. It features a three-dimensional single gas bubble initialised as sphere with diameter Db

and rising in stagnant liquid under the influence of gravity. Gas and liquid are initially assumed
to be at rest. The computational domain has a cuboid shape with dimensions of 2Db×2Db×4Db

in the three respective spatial directions. All boundaries are considered to be no-slip walls, i.e.
phase-specific velocities are zero at the wall and the pressure gradient in wall normal direction
is set to zero.

The selected test case is originally denoted with Case 2 [17] and is characterised by the
following dimensionless numbers: ratios of density and dynamic viscosity between liquid and
gas of 1000 and 100, respectively, an Eötvös number Eo = 125, and a Reynolds number based
on the gravitational velocity Reg = 15. The domain is spatially discretised with a regular

Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, September 6–9, 2021



601.5

computational grid with cubical cells. The reference data [17], which was produced with the
OpenFOAM solver interFoam, are obtained on a grid with 128 × 256 × 128 grid cells. It
turns out, that those results can be reproduced quite well with the resolving drag model and an
identical grid resolution considering the bubble shape and rising velocity.

5.1 Resolving Drag Model

In order to assess the performance of the used hybrid model, four different computational
G1 to G4 are used. Detailed information about the different grids are listed in Tab. 1, which
includes the ratio of cell size ∆x to sphere-equivalent bubble diameter Db besides the number
of grid cells in each direction. The results are presented in Fig. 1. The gas-liquid interface

Table 1: Overview over different computational grids for mesh study.

Computational Grid G1 G2 G3 G4
Number of grid cells 8× 16× 8 16× 32× 16 32× 64× 32 64× 128× 64

∆x/Db 4 8 16 32
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Figure 1: Results of grid study obtained with resolving drag model KD,R.

position in the reference data are scaled and translated in order to match the current results.
Hence, the reference data in Fig. 1 b) can purely serve for comparison of the shape of the
bubble. As expected from the reference data, the bubble initially accelerates from rest and
reaches a temporary maximum rising velocity before maintaining a nearly constant velocity
with a slightly lower value. Finally the bubble starts to decelerate slightly for t > 3 s, as it
approaches the upper wall. The bubble rising velocity predicted with grid G4 is nearly identical
to the reference data, while a strong underestimation is observed on the coarse grids, especially
with G1. The temporary velocity maximum is reached too late and the value is 5.7 % and 18.9 %
lower with G2 and G1, respectively. Subsequently, the gas bubble continues decelerating further
with these two grids instead of rising with nearly constant velocity.

Considering the bubble shape in Fig. 1 b), the result obtained with G4 is very close to the
reference results, except for the tips of both ligaments at the bottom of the bubble being slightly
less sharp. Grid G3 reveals a more narrow bubble shape with more elongated ligaments and
the bubble reaches a slightly lower vertical position compared to G4. A lower vertical position
is reached at t = 3.5 s on the coarse grids G1 and G2 compared to G4, which results directly
from the reduced rising velocity as discussed before. On computational grid G2, the bubble is
deformed in such a way, that its shape is narrower and more bend, resulting in a curved shape
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of the interface at the centre bottom of the gas bubble. The bubble shape obtained with G1
differs even more from the reference data as it shows a peak at the top of the gas structure. The
generally small size of the bubble is explained with the strong smearing of the interface due to
the low spatial resolution.

Therefore, the resolving drag model is assessed to be a reasonable approach for high
spatial resolution, which allows to reproduce simulation results of the homogeneous model. On
coarse computational grids, this drag formulation delivers a bubble rising velocity, which is too
slow, while the gas bubble is deformed in a nonphysical way.

5.2 Under-Resolving Drag Model

As pointed out in Sec. 4, the drag formulation with a constant coefficient of Cd = 0.8 is
used for cases, in which an interfacial slip velocity is allowed across the volume of the whole
gas bubble. Considering the same computational grids as in the previous section, a similar
grid refinement study is carried out with the under-resolving drag formulation. The results are
shown in Fig 2. The reference data in Fig. 2 b) has the same scaling and offset as in Fig. 1 b).
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Figure 2: Results of grid study obtained with under-resolving drag formulation KD,UR.

Considering the bubble rising velocity in Fig. 2 a), it is evident, that the bubble is predicted
to rise too fast on coarse grids, especially G1, compared to the reference data. With G1, the
maximum vertical velocity is overestimated by 40.8 %. In the following period, the bubble
rising velocity is oscillating and is higher than the reference value until t = 3.1 s. Subsequently,
the velocity drops rapidly, because the gas bubble reaches the top boundary of the computational
domain too early. With grid G2, the bubble decelerates too much after reaching its maximum
velocity. In contrast to the resolving drag model, on the fine grid G4, the rising velocity is too
high throughout the whole time. The velocity is overestimated by 4.2 % at its maximum and
does not reach the reference value until t = 3.5 s.

Considering the interface position shown in Fig. 2 b), with grid G1, at t = 3.5 s the
gas structure reached the top wall (y = 2 m), which is in line with the strong over-prediction
of the rising velocity. Hence, the data is out of the shown range in this case. On all other
computational grids under investigation, the bubble is too flat compared to the reference data
and no sharp ligaments are observed at all. Hence, it is assumed, that with the under-resolving
drag formulation the convergence rate of the results towards the reference values is extremely
low, if the latter are even achieved at any level of spatial resolution.
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5.3 Resolution Adaptive Drag Model

The interface classification approach presented in Sec. 3 and the resolution drag formula-
tion described in Sec. 4 are assessed in combination with the same grid refinements study. The
resulting under-resolution indicator fUR is shown in Fig. 3. It is evident, that the most degree

G1 G2 G3 G4

Figure 3: Under-resolution indicator fUR as contour of the xy-plane and interface position
(αG = 0.3) marked as white line for all four computational grids for three-dimensional rising
gas bubble.

of under-resolution is detected on G1 at the lateral positions of the gas bubble with a maximum
value of fUR

max ≈ 0.7. In this region the highest shear rate is expected, which demonstrates the
functionality of the classification procedure. Consequently lower values of fUR are calculated
at the stagnation points on the top and the centre bottom points of the bubble surface. With in-
creasing spatial resolution, the region of detected under-resolution and the maximum predicted
value of fUR become smaller. On G4 full resolution is predicted with fUR = 0.

The grid study results are presented in Fig. 4. The reference data in Fig. 4 b) has the
same scaling and offset as in Fig. 1 b). While the rising velocity in Fig. 4 a) predicted with G1
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Figure 4: Results of grid study obtained with resolution adaptive drag formulation KD.

still overshoots the reference data until reaching its temporary maximum, the deviation is much
smaller compared to the under-resolving drag formulation with a overestimation of 21.1 %.
Hence, the error is approximately half as large as with the under-resolving drag model. After
reaching the highest rising velocity, with G1 the bubble decelerates and the deviation from the
reference data shrinks. With grid G2, a rising velocity is predicted, which is much closer to the
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reference data than with both the resolving and the under-resolving drag formulations with the
same spatial resolution. The results with G4 are quasi identical to the resolving drag formulation
on G4 and, hence, almost no error is observed when compared to the reference data.

Considering the bubble shape in Fig. 4 b), the solution obtained with G1 reveals, that the
gas bubble is located slightly ahead of the position obtained with G4, but the difference is minor
compared to result G1 with the under-resolving drag formulation. The bubble shape obtained
with this grid is flat and shows no ligaments. It is worth noting, that grid G1 corresponds to a
spatial resolution of four grid cells per sphere-equivalent bubble diameter, thus it is mathemati-
cally impossible to capture more complex shapes on such a grid. For grids G2 to G4, convergent
bubble shapes are observed resulting in minor deviations from the reference solution with G4.

In this test case, the resolution adaptive drag modelling framework delivers results, which
are reasonable across all levels of grid refinement under investigation improving especially the
solution on very coarse computational grids. In contrast, the under-resolving drag formulation
with a fixed drag coefficient all across the computational domain turns out to deliver unreli-
able results for all levels of spatial resolution. For fine grids, the solution of the adaptive drag
model converges towards the Volume-Of-Fluid-like solution obtained with the resolving drag
formulation and, hence, is quite close to the reference data.

6 CONCLUSION AND PERSPECTIVE

Based on the hybrid multifield two-fluid model [5], a procedure is proposed, which allows
a proper modelling of gas-liquid interfaces even on very coarse meshes. For this purpose, two
characteristics are determined locally: the type of flow surrounding the interface and the degree
of spatial resolution of the interfacial shear layer. The resulting indicator function detects re-
gions of under-resolution, which can be used to adapt the drag locally, allowing local interfacial
slip. This is realised as a blending between resolving and under-resolving drag. The functional-
ity of this framework is demonstrated in the case of a 3D gas bubble rising in stagnant liquid. It
is shown, that the solution converges towards the reference data for high spatial resolutions, just
as expected. However, it is remarkable that the present approach predicts bubble rising velocity
and shape reasonably well for all lower grid resolutions. This contributes to a hybrid model,
which will help to predict gas-liquid flow by means of arbitrary degree of spatial resolution with
reliable predictive power.

Application of this framework to stratified flows as well as to more complex and industri-
ally relevant test cases might be focus of future endeavours. Furthermore, the information about
the estimated degree of under-resolution might be used for other modelling aspects in the con-
text of multiphase flow simulation, such as turbulence damping in the vicinity of the interface
or controlled morphology transitions between continuous and disperse phases and vice-versa.
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