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ABSTRACT 

The dynamics of a bubble of hot non-condensable gas formed at the interface between 

the high temperature melt and subcooled water is analyzed numerically in a one-dimensional 

spherically symmetric approximation. It is shown that for significant initial superheat of the 

bubble relative to the water, a rapid drop in pressure in the bubble occurs due to strong heat 

removal into the water. This leads to the collapse of the bubble and the appearance of an 

accompanying water flow. The results obtained made it possible to approximately describe 

the stage of collapse of the bubble as the polytropic process and to determine its power. The 

axisymmetric problem of the impact of the water jet on the surface of a melt during collapse 

of a gas bubble near the interface between the melt and water is numerically investigated. In 

this case, the obtained polytropic process equation is used to determine the pressure in the 

bubble. It is found that the resulting hydrodynamic impact on the melt is capable to produce 

melt splashing into the water to a height of several centimetres. If the frequency of formation 

of such bubbles is high enough, then, as a result of their collapses, the melt-water interface 

will be transformed into a premixed layer, which is capable to produce steam explosions. 

1 INTRODUCTION 

Severe accidents at nuclear power plants with reactor core melting can be accompanied 

by steam explosions when the molten materials of the core come into direct contact with 

water [1]. Sometimes such a contact can be realized with a stratified configuration of the melt 

(bottom layer) and water (top layer). For a long time, it was assumed (based on experimental 

studies with low-temperature simulators of melt and water) that such explosions have a low 

conversion ratio and do not pose a threat to the integrity of the reactor containment [2]. 

However, recent experiments in Sweden [3] have demonstrated that the interaction of a high-

temperature melt with a temperature of up to 1400 °C with water in a stratified configuration 

results in strong spontaneous steam explosions with a pressure of up to 40 bar. Such 

explosions can take place only in the case of preliminary mixing of a significant amount of 

the melt with water. 

In [3], a hypothesis was put forward, according to which such mixing in an initially 

stratified system can occur due to the generation and collapse of bubbles at the melt-water 
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interface. They wrote [3]: “Periodic process of growth, expansion and collapse of relatively 

large steam bubbles has been visually observed in PULiMS and SES tests with subcooled 

water. During bubble collapse, water at the bubble interface accelerates towards the melt 

surface. Water impact at the melt interface can be sufficient to produce a splash. At certain 

frequency of bubble growth/collapse events, sufficient momentum flux can be transferred to 

the melt in order to sustain existence of the premixing layer. Currently, this mechanism is 

considered as a working hypothesis as it doesn't contradict to the experimental evidence 

gathered this far.” During the collapse, the upper surface of the bubble is transformed into a 

downward cone, and the water in this cone as a high-speed jet moves down to the surface of 

the melt. Similar water cumulative jets are formed when cavitation bubbles collapse near a 

solid wall [4]. A theoretical study of this process in [4] showed that the forming water jets at 

an external pressure of 1 bar have velocities of about 170 m/s which can explain cavitation 

damage.  

In order for hypothesis [3] to be proved, it is necessary to show that 1) when single 

bubble collapses, rather high melt splashes occur and 2) many such bubbles must form, that 

is, the frequency of their formation must be high. In [5], a numerical study of the collapse of a 

superheated steam bubble in subcooled water was carried out. It was shown that at high steam 

superheats, which were in experiments [3], the collapse of such a bubble occurs in the same 

way as the collapse of a cavitation bubble. The forming cumulative water jets have such large 

velocities that they can produce the melt splashes a few centimeters high.  

Thus, the calculations in [5] confirmed hypothesis [3] regarding the possibility of high 

splashes of the melt after bubble collapse. However, the question of the influence of the non-

condensable gas (NCG), which can be in the bubble together with the steam, on the bubble 

collapse, remained unclear. This gas (air, for example) can be captured by the melt jet during 

its movement in the gas atmosphere until the jet enters the melt. A recent experimental study 

[6] confirmed the possibility of this event. NCG decreases the steam condensation rate, which 

can lead to a decrease in the velocity of the formed cumulative water jet and reduce its action 

on the melt. 

The present work is a continuation of [5]. The influence of NCG on the bubble collapse 

in cold water has been studied. It is rather difficult to estimate the amount of gas that was 

captured by the melt jet. Therefore, to evaluate the NCG effect on the bubble collapse, an 

extreme case was considered, when the bubble consists only of NCG. Similarly to [5], in this 

work, first, in a one-dimensional formulation, the dynamics of a superheated (with respect to 

the surrounding water) gas bubble at the initial stage of the first compression of the bubble is 

analyzed. The revealed features made it possible to select the polytropic process equation for 

the bubble collapse process, which describes the relationship between the bubble pressure and 

its volume. This equation was used to analyze the effect of water on the melt when a hot gas 

bubble is compressed by cold water near the surface of the melt. The analysis was carried out 

in the framework of a two-dimensional axisymmetric formulation by the boundary element 

method (BEM) [7]. 

2 DYNAMICS OF A BUBBLE OF A HOT NON-CONDENSABLE GAS IN COLD 

WATER 

Let at the initial moment a spherical bubble of non-condensable gas with a radius �� 

and a temperature ��� be in water with a temperature ���, which is lower than the bubble 

temperature. The initial gas pressure in the bubble is equal to the water pressure level, which 

we denote by ��. 

The hot bubble will transfer heat to the water and cool down. Because of this, the 

pressure in it will drop, and the surrounding water, under the influence of its pressure, will 
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squeeze the bubble, reducing its volume. If the initial bubble temperature is significantly 

higher than the water temperature, then the pressure drop in the bubble due to its cooling will 

be significant, and it can decrease its volume by an order of magnitude or more. Let us make 

an assessment of this process in a spherically symmetric formulation, considering the bubble 

as a zero-dimensional object and calculating the heat transfer to water using the non-

stationary heat conduction equation. 

Bubble dynamics equations. 

The equations for the mass and energy of the bubble are: 

 �	
����
�
 = 0 

 

(1)

 
����
 + ��

����
 = �            
 

(2)

Here 
� ,  ��,  ��, �� – density, volume, pressure, internal energy of a bubble, � –heat flux 

from a water to a bubble surface, 
 – time. 

The liquid motion is described by the Rayleigh-Plesset equation  

 
����
 + 3

2
���� = �� − ��
�� , (3)

where 
� – the density of water, which we will assume to be incompressible, �� =  �� �
⁄  - 

the bubble surface velocity, � - the current radius of the bubble.  

For a gas, we take the equation of state for an ideal gas: 

 
� = �����, (4)

where � is a gas constant, �� is a gas temperature. 

It is possible to transform equations (1), (2) and (4) to 

 
����
 = 3 �� − 1� − ������ , (5)

 
����
 = 3  − ����
�!�"�  (6)

where � − heat capacity ratio,   – specific heat flux from a liquid to a bubble surface, !�" – 

gas heat capacity at constant gas pressure. 

Energy equation for water. 

To close the system of equations (3) - (6), it is necessary to determine the specific heat 

flux from a water to the bubble,  . For this purpose we will use the energy equation for water: 

 
�!� #$��$
 + ��
$��$% & = 1

%�
$

$% �'�%� $��$% � (7)

where �� = ���%, 
� and �� = ���%, 
� – a temperature and a velocity of a water, !� and '� – a 

specific heat capacity and a thermal conductivity of a water, % – the radial coordinate 

originating from the center of the bubble. 

We assume that all the physical properties of a water (
�, !�, '� ) are constant. Then the 

equation of water energy will take the form: 

 
$��$
 + ��

$��$% = (�%�
$

$% #%� $��$% & (8)
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where (� = )*
+*,*. 

The specific heat flux q on the bubble surface is equal to 

  = '�
$��$% -./� (9)

3 NUMERICAL STUDY OF THE DYNAMICS OF A HOT GAS BUBBLE IN A 

COLD LIQUID 

For the analysis, the parameters of the experiment E6 [3], which was considered in [5], 

were used: the initial water temperature ��� = 348 К, the water pressure �� = 1 bar. It was 

assumed that the non-condensing gas is air, which is captured by the melt jet during its 

movement. The initial temperature of the bubble is an uncertain value, so its variation was 

carried out. We were interested in the dynamics of the bubble, first of all, at its high 

temperatures, when we could expect rapid compression of the bubble and the occurrence of 

rapid dynamic processes. Therefore, the calculations used high initial temperatures of the 

bubble up to its initial superheating relative to water 650 K, when its temperature was almost 

equal to the temperature of the melt. The typical size of the bubbles observed in [3] (photo on 

Fig. 16) is about 1 cm, thus �� = 1  cm was set as the initial bubble size. 

For the purposes of this study, the most important is the initial stage of reducing the 

pressure in the bubble and reducing its size. This stage is somewhat analogous to the process 

of collapse of a steam bubble, studied in [5]. Due to the fact that a bubble of non-condensing 

gas is now being considered, its collapse is impossible, since with a decrease in the volume of 

the bubble, its pressure increases and does not allow the bubble to collapse. However, if we 

consider the dynamics of such a bubble near the melt surface, then, as follows from the results 

[5], the bubble will deform with the formation of a jet of water directed towards the melt. It 

can be assumed that although the bubble will not collapse, it will break up into separate 

fragments in such a way that a jet of water reaches the surface of the melt. 

In order to study the effect of the initial superheating of the bubble on the dynamics of 

the process, a series of calculations were performed, in which this value varied as follows: 

350 K, 500 K, 650 K. Figure 1a shows the time dependences of the bubble radius under these 

superheats. It can be seen that the largest decrease in the size of the bubble occurs at its largest 

initial superheating, the minimum radius of the bubble is 5.5 mm at a time of 1.4 ms. 

  

(a) (b) 

Figure 1: Bubble radius (a) and pressure (b) for various initial steam superheat 
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It follows from Figure 1b that at first there is a rapid drop in the bubble temperature due 

to heat transfer into the water, and by the time of about 0.1 ms, the bubble temperature in all 

variants becomes equal to a value that is several degrees higher than the ambient water 

temperature. The subsequent decrease in the bubble temperature to the water temperature is 

significantly slower. 

Figure 1a shows that the largest drop in pressure in the bubble occurs at the highest 

initial temperature of the bubble, it falls about three times compared to the initial value. This 

happens at a time of 0.12 ms. Due to the compression of the gas in the bubble, its pressure 

begins to increase, and by the time of 1 ms, the pressure of the bubble is compared with the 

pressure of the surrounding water, and then begins to exceed it. Because of this, the bubble 

begins to expand. 

It is interesting to compare the dynamics of collapse of a gas bubble with the collapse of 

a cavitation bubble, that is, a steam bubble in which a constant pressure is maintained equal to 

the saturation pressure at the ambient water temperature. The dynamics of a cavitation bubble 

is described only by the Rayleigh-Plesset equation (3), supplemented by a kinematic 

relationship between the velocity and the radius of the bubble. Figure 2 shows the time 

dependences of the radius of a cavitation bubble and a gas bubble with an initial temperature 

superheating of 650 K. The water temperature is 348 K, the water pressure is 1 bar. The 

curves coincide for about 0.5 ms, then at the moment of 1.15 ms the cavitation bubble 

collapses, and the radius of the gas bubble reaches a minimum at the moment of 1.4 ms, after 

which it begins to expand. 

To perform a two-dimensional hydrodynamic calculation of the compression of a gas 

bubble with water near the melt surface by the boundary element method, it is necessary to 

determine the dependence of the pressure in the bubble on time. For this purpose, we will use 

the obtained solution of a one-dimensional spherical problem for the case of superheating 650 

K (Figure 1). For the two-dimensional calculation of bubble collapse by the BEM method, the 

bubble pressure was determined by the following procedure. When calculating the time 

interval from 0 ms to 0.2078 ms, the tabular dependence 3��
� was used, which is graphically 

shown in Figure 1b. When calculating later moments of time, the pressure in the bubble was 

found from the ratio: 

 ���
� = ��,4 5 ��,4���
�6
4.��89

 (10)

here ��,4=0.34487 bar and ��,4 = 4,044631 ∙ 10<= >? is the pressure and volume of the 

bubble at the time of 0.2078 ms. 

0,0 0,5 1,0 1,5 2,0 2,5

1

3

5

7

9

0

2

4

6

8

10

a
, 

a
s
, 

m
m

time, ms

 as, mm

 a, mm

 

Figure 2: Radius histories of a cavitation bubble �@�
� and of a gas bubble ��
� with an initial 

temperature superheating of 650 K 
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4 EVALUATION OF THE HYDRODYNAMIC EFFECT ON THE MELT 

DURING COLLAPSE OF A GAS BUBBLE 

We will study the evolution of a gas bubble in incompressible water, which at the initial 

moment of time has a radius �� and is located at a distance ℎ from the melt surface. Since the 

melt density is an order of magnitude higher than the water density, we will approximate the 

surface of the melt with a rigid wall. The problem is investigated under an axisymmetric 

formulation, the B axis is directed upwards from the melt surface and passes through the 

center of the bubble. The radial axis % is located on the melt surface. 

The water is assumed to be incompressible; its potential flow is described by the 

Laplace and Bernoulli equations: 

 ∆Φ = 0 (11)

 
$Φ
$
 + 1

2 E�� + �� − ��
� = 0 (12)

where Φ is the velocity potential, �� is the local pressure in the water. At large distances from 

the bubble (at infinity), the pressure takes the value ��, the water velocity vanishes, and the 

velocity potential tends to an arbitrary constant, taken to be zero. 

On the bubble surface, the pressure is given by �� = �� and the position vector F of the 

fluid particle and the velocity vector, E� = ∇Φ, are related by kinematic formula 

 
dF d
I = E� (13)

Taking into account that �E�∇�Φ = E��, we can obtain the following equation for the 

evolution of the velocity potential at the bubble boundary using equation (12): 

 
dΦ
d
 ≡ $Φ

$
 + �E�∇�Φ = �� − ��
� + 1
2 E�� = 0 (14)

Equations (11)–(14) are solved numerically. Advancement in time of the bubble 

boundary coordinates according to Eq. (13) and of the velocity potential at those points from 

Eq. (14) is performed by the first-order Euler scheme. The velocity potential Φ is updated by 

the boundary element method [7], which enables the water velocity on the bubble boundary to 

be updated on each time step. The bubble pressure �� is calculated from Eq. (10). 

The collapse of a gas bubble with an initial radius of 10 mm was analysed. The initial 

distance of the bubble center from the melt surface was also 10 mm, that is, the bubble 

touched the melt surface. As it was shown in [5], with this arrangement of the bubble, the 

maximum hydrodynamic effect on the melt surface is achieved. The external water pressure �� was 1 bar, the water density 
� was 974.94 kg/m-3. The bubble pressure during the 

calculation was calculated in accordance with Eq. (10). 

Figure 3a shows the evolution of a collapsing gas bubble. It can be seen that the initially 

spherical shape of the bubble is transformed into a toroidal one. A high-speed water jet enters 

the hole of the torus, the jet is directed to the surface of the melt. The last point in time in this 

figure is 1.534 ms. For comparison, Figure 3b shows the evolution of a cavitation bubble with 

the same initial parameters. The bubble pressure was kept constant at 0.38 bar, which 

corresponds to a saturation pressure at an ambient water temperature of 348 K. In the case of 

a cavitation bubble, hydrodynamic processes develop a little faster (last time moment is 1.375 

ms), but in general, both bubbles evolve in a similar way. 

The quantity which characterizes the directional fluid flow generated by the collapsing 

bubble, is the Kelvin impulse, namely, its vertical component 

 KL = −
�ML N Φ.
O

PdQ (15)
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(a) gas bubble (b) cavitation bubble 

Figure 3: The bubble shape evolution. Times are given in ms 

In Eq. (15), ML is the unit vector in the vertical direction, P is the unit surface normal 

vector pointing into the bubble, Q is a bubble surface. The Kelvin impulse is well-known in 

fluid dynamics, providing a meaningful way to quantify unsteady flows near deformable 

bodies immersed in liquid, including collapsing cavities and cavitating bubbles; a review of 

this concept with necessary references can be found in [7]. For the problem in question, the 

Kelvin impulse characterizes the flow momentum directed towards the melt, and can be used 

to calculate the melt impact. 

Figures 4a and 4b show the time dependences of the pressure in the gas bubble and the 

Kelvin impulse. For comparison, these figures show similar dependencies for a cavitation 

bubble. It is clearly seen how the pressure in the collapsing bubble quickly falls to the 

saturation pressure and stays at this level for a relatively long time (up to about 0.6 ms). Then 

the pressure in the gas bubble begins to increase, the elastic properties of the gas begin to 

affect the pressure more strongly than the heat sink into the water. The pressure increases by 

about 4 times compared to the initial value, and only at this pressure decreasing of the bubble 

is stopped.  

Figure 4b shows the time dependences of the Kelvin impulse for gas and cavitation 

bubbles. As it was shown in [5], this value determines the height of the release of melt 

droplets into the water during the collapse of the bubble. It follows from Figure 4b that the 

Kelvin impulse is maximal at the moment when the water jet reaches the melt surface, while 

for a gas bubble the value of the maximum Kelvin pulse is approximately 2/3 of the same 

value for a cavitation bubble. 

5 CONCLUSION 

In the study [5], it was found that the collapse of superheated steam bubbles formed 

near the melt-subcooled water interface can produce melt splashes into the water to a height 

of several centimetres. This process can be considered as one of the main physical reasons of 

a premixed layer formation in stratified systems. Second main reason is a frequency of the 

bubble growth/collapse events. This item is outside of the frame of the current study. 

The influence of NCG on the bubble collapse was studied in the present work because 

NCG can decrease the condensation rate and reduce the effect of water on the melt. It was 

investigated an extreme case, when only NCG bubble is collapsed in the cold water. It was 

found that in this case, a rapid collapse of the bubbles occurs also, which leads to a 
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hydrodynamic action on the melt of the same order as in the case of superheated pure steam 

bubbles. 

 

(a) (b) 
  

Figure 4: Comparison of dynamics of gas and cavitation bubbles:  

(a) pressure, (b) Kelvin impulse 

The physical reason for the similarity of these processes is a strong heat sink from the 

bubble in both cases, leading to a rapid drop in the pressure in the bubble. As a result, the 

collapse of NCG bubble becomes similar to the collapse of a cavitation bubble with the 

formation of a cumulative water jet acting on the melt. It is obvious that in the intermediate 

case of a bubble consisting of a steam-NCG mixture, the process of the bubble collapse will 

be realized in the same way. 
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