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ABSTRACT

Neutron activation analysis (NAA) is a powerful set of methods for elemental composition
analysis. However, the standard approach used to calculate the elemental composition from
NAA measurements has many limitations. We replaced the current method of data analysis
with computer simulation. By using the Geant4 particle simulation toolkit, we simulated NAA
from the initial neutrons that activate the sample, to the final gamma rays hitting the high purity
germanium (HPGe) detector.

To compare simulation results with measurement, we used a simple model of detector
electronics, that converts energy deposition events within the detector, to the energy recorded
by the electronics, by taking into account both true and random coincidence effects. NAA thus
became an optimization problem - to minimize the difference between simulation output and
experiment, by finding the appropriate simulation inputs, e.g. the sample composition, or HPGe
detector geometry. This unified the up to now disparate parts of k0 instrumental neutron activa-
tion analysis (k0-INAA) - sample composition determination, detector calibration, and neutron
spectrum determination all reduce to the same optimization problem. The only difference be-
tween them is which parameters are known versus unknown. This simplifies activation analysis,
and improves accuracy, as far fewer approximations are made.

We tested this approach by comparing its results versus traditional k0-INAA on certified
reference materials.

1 INTRODUCTION

k0-INAA is a versatile technique, allowing us to determine the concentration of many
elements with a single measurement. However, due to its age, it makes many approximations
that may no longer be necessary. This is due to the improvements made in nuclear cross-section
data, particle simulation codes, and the increase in computing power enabling what were once
prohibitively expensive calculations.

The underlying principle of k0-INAA is simple [1]: A sample, whose elemental composi-
tion we wish to determine, is irradiated with neutrons in a nuclear reactor, and becomes radioac-
tive, emitting gamma rays characteristic of each element. The gamma spectrum is measured on
a HPGe detector, yielding gamma peaks that are proportional to the element concentration in
the sample, and the neutron flux the sample was exposed to. To determine the latter, the sample
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is co-irradiated with a comparator (typically an Al-Au foil) with a known concentration of Au,
whose activity is used to determine the neutron flux.

There are further complications. Each isotope has a distinct neutron activation spectrum,
which must be compensated for using the k0 and Q0 constants, and the neutron flux parameters
f and α.

The HPGe detector efficiency also depends on the gamma energy. To correct for this,
the full-energy peak efficiency εp is determined using absolutely calibrated gamma sources.
Because of coincidence effects, εp can only be measured at larger sample-detector distances,
where the likelihood of multiple cascade gammas hitting the detector is negligible, as the de-
tector presents a smaller target. The efficiency transfer method is used to translate εp to other
positions.

Coincidence effects further distort gamma spectrum measurements. Some nuclides emit
multiple gamma rays in a rapid cascade. If multiple hit the detector simultaneously, its electron-
ics will register them as a single event at the sum of the deposited energies. εp is not sufficient
to correct for this, as a gamma can deposit only part of its energy and still cause interference,
meaning the total efficiency εt is required, which is determined using coincidence-free sources.

Finally, there is peak fitting. Once we have a gamma spectrum, the peak sizes are de-
termined manually. This is a laborious and subjective task, especially in cases where multiple
peaks are close together. A further weakness is that each peak is evaluated individually, despite
our knowledge on how it must diminish given known nuclide half-lives.

These weaknesses have motivated us to seek a more holistic and objective method, utiliz-
ing the Geant4 particle simulation toolkit [2].

2 THEORY

While at first glance replicating the experiment in a Monte-Carlo simulation seems sim-
ple, a number of complications arise, many related to computational efficiency, necessitating
multiple variance reduction techniques.

2.1 Element concentrations

The first task is to determine the activation reactions per unit of density of each element.
The problem is that naively simulating a sample with a best-guess composition will produce
widely differing number of activations for each element, due to differences in concentrations
and cross-sections. To overcome this, each activation event is converted into a collection of
statistically-weighted activation events, one for each element. The weight ωi of element i with
microscopic cross-section σact,i, density ρi, and macroscopic cross-section Σact,i = ρiσact,i, is
determined by the ratio of cross-sections at the activating neutron energy

wi =
Σact,i

Σact

=
ρiσact,i
Σact

(1)

By adjusting the weights, we can change element concentrations without re-running the sim-
ulation, with the caveat that this does not update the self-shielding factor. Meaning that if the
determined concentrations greatly differ from the initial guess, the simulation should be itera-
tively re-ran.

2.2 Decay time convolution

The second difficulty is that only a small fraction of gamma decays occur during mea-
surement. E.g. the half-life of 198Au is 2.697 days [3], but typically we only measure it for 5
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minutes. If we naively simulated decay times, the vast majority of gammas would be wasted.
Instead, we sample decays only inside the measurement interval [a, b], adjusting the weight of
the event with

wdecayt =

∫ b

a

p(t)dt (2)

where p(t) = λe−λt is the unbiased decay probability.
To deal with the case of multiple decay, where there is no single λ, we introduce the

concept of node populations. A node is simply one element of a particle track, with a time
(measured from the previous node), position, particle species (e.g. neutron, gamma, heavy
nuclide, positron,..), zero or more child node (events caused by this node. e.g. the children of
an active nuclide could be multiple gammas and a decay nuclide) and possibly a half-life.

Because one particle track in the simulation does not necessarily correspond to one phys-
ical track (typical neutron flux in the TRIGA IC-40 irradiation channel is on the order of
1012 cm−2s−1 [4], so 1-to-1 correspondence is computationally infeasible), we use population
as the ratio of physical tracks to simulated tracks.

The population of a node grows due to its parent node acting as a source (e.g. by decaying
into it), and diminishes due to its own decay. If the parent node has population pp(t) and a decay
constant λp, then it feeds the child node with rate f(t) = λppp(t). In case the parent node is
an incident irradiation neutron, then it feeds it with an arbitrary rate f(t) = r(t), defined by
the neutron spectrum and flux time-profile. The child node decays with λc, so the proportion of
population from time 0, that still remains at time t, is g(t) = e−λtH(t). H(t) is the Heaviside
step function, and is used to limit the population to being affected only by past events. In other
words, it follows from the definition of g(t), that g(t < 0) must be 0. If the child node did not
decay, its population would simply be the accumulation of its source up to time t:

pc(t) =

∫ t

−∞
f(x)dx (3)

Because the child node is subject to radioactive decay, its population must be adjusted to

pc(t) =

∫ t

−∞
f(x)g(t− x)dx (4)

The integration range can be expanded to (−∞,∞) because g(t − x) = 0 for t < x. This
simplifies to a convolution of f and g:

pc(t) =

∫ ∞
−∞

f(x)g(t− x)dx (5)

= (f ∗ g)(t) (6)

This covers the case where the parent and child nodes both have durations determined by ra-
dioactive decay. The other possibility is that a node has a constant duration (e.g. the time
between two scattering events). In that case, the duration is used to offset f(t) until encounter-
ing a decay node, at which point the convolution result can be applied.

This approach supports an arbitrary, time-dependent neutron flux, so it can simulate phe-
nomena such as reactor flux changes during sample irradiation [5].

With this result, we can calculate the population of every node with an unstable nuclide
at the start of measurement, and efficiently sample their decay times during the measurement
interval. Their decay products, that may be unstable themselves, are sampled using the full

Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, September 6–9, 2021



320.4

exponential distribution, without limiting it to the measurement interval. This yields the full
cascade of energy deposition events, that is used to simulate coincidence effects.

Note that even if the decay times of the child particles are much longer than the measure-
ment time, there is no cause for concern from the point of view of computational efficiency.
This is because the child particles have also had their population at the start of measurement
calculated, and the same sampling of decay within measurement interval will be applied to
them.

2.3 Gamma direction biasing

To avoid wasting time on gammas that do not hit the detector, we rotate gamma decay
events towards the detector, adjusting their weight proportionally to the solid angle towards
which they are biased. We apply the same rotation to all the child nodes as well, so that angular
correlations, if any, are preserved.

Additionally, we also orient some decay gammas away from the detector. This is to keep
the simulation mathematically correct. The statistical weight of an event is

w =
ptrue
psim

(7)

Where ptrue is its true probability, and psim is the probability in our simulation, after variance
reduction. ptrue of a gamma being emitted away from a detector is > 0. If we neglected to
simulate any such gammas, that would make psim = 0, and the weight of such a particle would
diverge. There is a chance, however unlikely, that a gamma emitted away from the detector
scatters towards the detector. In that case, the variance of our result would be infinite. To avoid
this, we keep some such gammas, and use Russian Roulette to reduce their numbers.

2.4 Detector response

The steps so far yield a series of energy deposition events, as produced by Geant4, given
our best knowledge of the detector composition. We use a simple simulation of the HPGe
electronics to convert these to counts as measured by the detector, with three main parameters:
the energy needed for the electronics to register the start of a hit Ethreshold, the time during
which charge collection takes place tmeas, and the time after that when the electronics are non-
responsive tdead.

This reproduces coincidence and dead-time effects, but produces much sharper peaks than
those measured by the detector. To reproduce peak widths, we empirically measure the full-
width half-maximum (FWHM) at different energies, fit a 2nd-order polynomial to them to get
the peak width at all energies, and then apply Gaussian broadening to the simulated spectrum.

A further correction we make is that of detector efficiency. We use the differences between
the measurement and simulation of absolutely calibrated gamma sources to find a correction
function that minimizes the root-mean-square of those differences:

εmeas
εsim

= 1.0362− 0.058611

(
E

MeV

)
− 0.018678

(
E

MeV

)2

− 0.0058065

(
E

MeV

)3

(8)

While this is not as principled as the approach taken by [6], who adjusted detector geometry in
the simulation to improve the results, it is faster and simpler. Note that the correction function
was chosen to minimize differrences on the entire spectrum, not only the peaks. Fig. 1 shows
how the efficiency correction improves the agreement between simulation and experiment on a
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section of the 226Ra. spectrum. Note that empirical peak broadening is already applied to the
’simulated’ spectrum. In contrast, Fig. 2 shows the failure of empirical peak broadening to cor-
rectly reproduce the 511 keV annihilation peak, that is approximately 2x wider than simulated.

Figure 1: Comparison of measured, simulated, and adjusted spectra for 226Ra. 4K refers to the
measurement position with a sample-detector distance of 16.2 cm.

Figure 2: Annihilation peak in the 65Zn spectrum. At this energy, the simulated and adjusted
spectrum coincide, so they appear as a single line on the graph. 05K refers to the measurement
position with a sample-detector distance of 2.2 cm.

2.5 Sample analysis

With a known neutron spectrum, detector efficiency, and peak width adjustment, we can
determine the detector response per unit of neutron flux and element concentration. The neutron
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flux is determined from the measurement of the Al-0.1%Au comparator co-irradiated with the
sample, then the responses per unit of element concentration in the sample are determined.
These responses must be simulated for each sample measurement separately, since different
sample-detector distances and measuring times produce different response functions, due to
differing detector efficiencies and decay times.

Fitting a weighted sum of these simulated responses to the measured spectra yields the
ratios between the element concentrations used in the simulation, and that of the sample. The
fitting is done consistently for all measurements. I.e. if a sample was measured multiple times,
a single set of coefficients will be used to fit the responses for all the spectra. By iterating this
step, and re-determining the response functions using element concentrations close to their true
values in the simulation, we can more accurately capture random-coincidence effects as well.
The results of such fitting are shown in Figs. 3 and 4.

Figure 3: Simulated and measured spectrum of BCR-320R, at a sample-detector distance of
2.2 cm. The simulated spectrum is a linear sum of the spectra of individual elements.

Figure 4: Detailed view of the shaded section of the spectrum from Fig. 3.
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3 RESULTS AND DISCUSSION

We applied this method to measurements of the BCR-320R Channel Sediment certified
reference material, conducted in the scope of calibration of the CA5 HPGe detector at IJS in
2015 [7]. Our simulations used the same detector geometry and neutron spectral parametes
(f = 27.11, α = −0.0042) as the k0-INAA conducted in the scope of that calibration, that we
compare our preliminary results with in Table 1.

Table 1: Preliminary analysis results comparison for the BCR-320R certified reference sample.

Traditional k0-INAA [7] Certified value Our method

Element Concentration (mg/kg)* Concentration (mg/kg)** Concentration (mg/kg)

As 23.3± 0.8 21.7± 2.0 26.2
Co 10.1± 0.4 9.7± 0.6 13.5
Cr 59.7± 2.1 59± 4 75.7
Fe 26106± 914 25700± 1300 28690
Hg 0.884± 0.044 0.85± 0.09 1.031
Sc 5.45± 0.19 5.2± 0.4 5.67
Th 5.42± 0.19 5.3± 0.4 5.33
U 1.57± 0.06 1.56± 0.20 1.84
Zn 330± 12 319± 20 400

* Uncertainty with a coverage factor of k = 1 according to [8]
** Expanded uncertainty with a coverage factor of k = 2, corresponding to approximately 95%
confidence.

We see this method does not yet outperform traditional k0-INAA, and in fact gives results
outside the certified confidence limits. While uncertainty quantification for our method has not
yet been done, in principle the sources of uncertainty, and hence the magnitude, are very similar
as for k0-INAA. Therefore the confidence range of our results is unlikely to overlap with the
certified values, suggesting the presence of one or more systematic errors.

A possible candidate for the source of this error is the separate code used to determine
the neutron flux and the element detector response. Though the two code paths are theoretically
equivalent, programmer error has not yet been excluded. A further source of error is the re-
sponse fitting method used. Currently it is a naive least-means-square, minimizing the squared
error over the entire spectrum. However, k0-INAA is more discriminating, preferring to fit only
on gamma peaks, and among the gamma peaks, only those with well-known intensities. There
is also the possibility that the integral k0 constants are more accurate than the differential cross-
sections used by Geant4. Since the k0 constants were meaured specifically for use in k0-INAA,
that possibility is likely. Finally there is the way in which spectrum fitting is done. As a lin-
ear sum of responses for individual elements, it does not account for random coincidence by
different elements.

On the other hand, despite its inaccuracy, the method already exhibits several benefits.
Except for data entry it is in principle entirely automatic, without the laborious peak-fitting
of k0-INAA. It partly includes random coincidence effects, and supports arbitrary sample ge-
ometry and neutron flux temporal variability. Finally, the spectrum fitting is more consistent,
utilizing the full benefit of known half-lives and peak sizes consistently for multiple measure-
ments of the same sample.
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In sum, while still immature, this method is promising, with room for improvement by
including various corrections to put it on par with traditional k0-INAA.
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