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ABSTRACT

Computing a flow within a highly congested solid medium is still nowadays an important
scientific issue in many research fields, such as nuclear engineering. Indeed, confronted with an
overwhelming number of interfaces, the classical Fluid-Structure Interaction approach would
inevitably lead to cumbersome computations. This important issue of interfaces can also be
coupled with multi-scale phenomena, caused both by the fluid and the solid medium geome-
try. In order to deal with these interfaces and multi-scale problematics, this work presents a
multi-scale and homogenized model able to account for an inviscid compressible flow within
a congested solid medium. An original use of Continuous Wavelet Transform here allows to
derive spatially-filtered PDEs governing an equivalent/homogenized fluid. The numerical com-
putation of the homogenized fluid PDEs allows to reconstruct (thanks to an inverse wavelet
transform), at each time step, the pressure field in the real fluid, which leads to the dynamic
load applied to the solid medium. This important step, validated on 2D reference numerical
solutions with steady solid obstacles, thus opens the way to a coupled fluid-structure solver.

1 INTRODUCTION

The current work finds its starting point in the study of the mechanical consequences of
accidental scenarios for Pressurized Water Reactors (PWR), with a focus on the propagation
of transverse pressure waves through the fuel assemblies of a nuclear core (see Figures 1a-
2). Such a phenomenon, called Loss Of Cooling Accident (LOCA), originates from a failure
in one of the pipes of the pressurized primary loop (155 bar). The Physics of interest thus
requires to compute a compressible flow within a highly congested solid medium, here the
fuel assemblies. Confronted with an overwhelming number of interfaces, the classical Fluid-
Structure Interaction (FSI) approach [1, 2, 3], which relies on an explicit representation of all
the interfaces, would be too cumbersome. This important issue of interfaces is also here coupled
with multi-scale phenomena: a wide range of spatial scales is for instance contained within a
viscous turbulent flow, possibly entangled with the different spatial scales of the congested solid
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medium. To tackle both the interface and multi-scale problematics, one may try to simplify
the description of the problem at hand, by coarsening the scale of representation. A porous
media approach has for instance already been proposed in [4, 5, 6] for the study of a PWR core
dynamics in response to a seismic transient.

(a) (b)

Figure 1: Fuel assemblies design: overview (1a) and spacer grid (1b).

Figure 2: Sketch of a 2D pressure wave propagating through a fuel assembly cross section.

This quest for an affordable and ”optimal” scale of representation is a major trend that
crosses multiple scientific and engineering communities : signal and image processing (data
compression), continuum media modeling (e.g. heterogeneous materials, porous media, tur-
bulence, two-phase flows), problems defined in high dimensional spaces (e.g. kinetic theory,
molecular dynamics. . .). Regarding continuum media problems, one could distinguish two ma-
jor trends in literature : on the one hand, approaches willing to build brand new equations de-
scribing an equivalent and simplified medium (e.g. analytical homogenization of heterogeneous
materials, Large Eddy Simulation, Variational MultiScale Method...), and on the other hand, ap-
proaches which leave the original PDEs intact, and rather focus on speeding up the computations
(computational homogenization, adaptive numerical methods, Reduced Order Modeling...). To
the authors’ knowledge, all these different methods are still currently facing either theoretical
or numerical challenges : treatment of boundary conditions, closure equations, strict scale sep-
aration, periodicity, existence of a Representative Volume Element, nonlinearities, insights on
the fine-scale solution, separated representation of the unknowns. . .

Considering this extensive state of the art, the present work puts forward an analytical
multi-scale and homogenized model able to account for the propagation of an inviscid com-
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pressible flow within a congested solid medium. In order to build a self-sustained model, by-
passing the multiple limitations previously highlighted, this work promotes an original use of
Continuous Wavelet Transform (CWT). By applying, by means of a convolution product, a
well-designed wavelet (or scaling function) to the fluid Partial Differential Equations (PDEs),
the model results in spatially-filtered PDEs governing an equivalent/homogenized fluid in the
whole {fluid + solid} domain. Furthermore, thanks to an inverse wavelet transform, the model
is able to connect analytically resolved (i.e. the homogenized fluid) and unresolved (i.e. the real
fluid) scales. This wavelet-based closure equation allows on the one hand, to rigorously transfer
the original fluid boundary conditions into the homogenized fluid, and on the other hand to ex-
plicitly handle nonlinearities. The numerical computation of the homogenized fluid PDEs then
allows to reconstruct, at each time step, the pressure field in the original fluid, which leads to
the dynamic load applied to the solid medium.

In this work, the choice has been made to focus the homogenization process on the fluid,
as it occupies a connected domain in the geometry of interest. Furthermore, CWT is hereafter
applied in a 2D formalism. This work indeed focuses on the propagation of transverse pressure
waves through the cross section of fuel assemblies, as displayed in Figure 2.

The following of this paper is organized as follows: section 2 presents the key ingredients
of the wavelet-based homogenization process. Section 3 then briefly illustrates and discusses the
model capabilities with numerical experiments involving 2D shock waves propagating through
solid obstacles. The final section is then dedicated to a conclusion.

2 MODELING

2.1 Modeling at the microscopic scale

To begin this section, let us state the modeling at the microscopic scale. As an illustration
for the problem at study, let us consider the 2D geometry displayed on the following Figure 3:

Figure 3: Illustration of a 2D {fluid + solid} geometry.

The whole {fluid + solid} domain thus contains a fluid sub-domain Ωf , which is an open
bounded and connected space of R2, and a solid sub-domain Ωs, which is an open bounded
and disconnected space of R2. The boundaries ∂Ωf and ∂Ωs are generally assumed smooth
(typically C1) in order to properly define the outward normal vectors. It is important to note
that no periodicity or scale separation assumption on the solid domainΩs (or onΩf ) are needed
in the design of the model. The problem geometry being stated, let us now focus on the fine-
scale modeling of the solid and fluid media :

• as we are here mainly interested in the homogenization process of the fluid, and as spacer
grids tend to maintain a constant distance between neighboring disks, the global 2D array
will be simplified and considered as a rigid body animated with two degrees of freedom,
governed by the following differential equation:

∀i ∈ {1, 2}, Üi + 2ξω0U̇i + ω2
0Ui =

1

m
×
(
F F→S · ei

)
, (1)
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where
(
e1, e2

)
is the orthonormal Cartesian basis of R2, U =

(
U1 U2

)T is the dis-
placement (m), m is the mass (kg), ω0 is the system eigenfrequency (rad.s−1), ξ is the
(dimensionless) damping coefficient and F F→S is the force (N) applied by the fluid to
the whole array of disks.

• the water flow will be considered as a monophasic compressible and inviscid fluid, satis-
fying Euler compressible equations and a barotropic equation of state:

∂tρ+ div (ρv) = 0 in Ωf (t),
∂t (ρv) + div (ρv ⊗ v) = −∇ p in Ωf (t),

∂t (ρe) + div ((ρe+ p) v) = 0 in Ωf (t),
(2)

p = pref + c2son (ρ− ρref ) , (3)

where ρ is the fluid density (kg.m−3), v the velocity field (m.s−1), p the pressure field
(Pa), e the specific total energy (J.kg−1), ρref a reference density, pref = p (ρref ) the
corresponding reference pressure, and cson =

√
∂ρp the sound velocity in the fluid. It

shall here be noted that, when studying a barotropic fluid, it is not necessary to solve the
energy balance equation. Thus, only the mass and momentum balance equations will be
hereafter considered.

The above equations are completed with classical no-penetration kinematic boundary
conditions, and a dynamic boundary condition for the pressure on the interfaces.

2.2 Wavelet-based homogenization

The fine-scale modeling being stated, the wavelet-based homogenization process now
relies on the application of Continuous Wavelet Transform (CWT) to the fluid conservation
laws and equation of state. This is done by writing the convolution products between a wavelet
family {Ψs}s>0 =

{
1
s
Ψ
( ·
s

)}
s>0

(where s is the scale/dilation parameter of the wavelet) and the
fluid equations, as formally illustrated by equations (4-5) below:(

Ψ̃
∗
s

)
∗
{

∂tρ+ div (ρv) = 0,
∂t (ρv) + div (ρv ⊗ v) = −∇ p,

(4)

Ψ̃
∗
s ∗
{
p = pref + c2son (ρ− ρref )

}
. (5)

As wavelets (respectively scaling functions) act as band-pass (resp. low-pass) filters in the
spectral domain, such a convolution product will result in spatially-filtered PDEs describing an
equilvalent/homogenized fluid. For an introduction to Continuous Wavelet Transform (CWT),
its properties and applications, the interested reader may refer to the works [7, 8, 9].

To apply such a convolution product on PDEs initially defined on a bounded domain Ωf ,
and possibly exhibiting non-smooth solutions (e.g. shock waves), the original PDEs first have
to be extended in a weak sense to R2. This extension mostly relies on distribution theory and
Green’s formula for integration by parts. Then, one can write, in a weak sense, the convolution
product between the wavelets and the extended fluid PDEs. All these steps are thoroughly de-
scribed in [10], and will be reinforced for a generic continuum medium problem in an upcoming
article. Assuming that the previous procedure is followed, one may then obtain, with a real and
isotropic wavelet Ψ (or its associated scaling function), the following spatially-filtered PDEs:
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Consider T > 0. ∀u ∈ Ωf ∪Ωs, ∀t ∈ [0, T [, s > 0:

∂tW [ρ](s, u, t) + div (W [ρv]) (s, u, t) = −
∫
∂Ωs

Ψ̃
∗
s(u− σ)[ρ]FS [∂tU ·nF→S] (σ, t) dσ. (6)

∂tW [ρv] (s, u, t) + div (W [ρv ⊗ v]) (s, u, t) +∇W [p](s, u, t)

= −
∫
∂Ωf

Ψ̃
∗
s(u− σ) [p]

F
cF (σ, t) ·nF→cF (σ, t) dσ

−
∫
∂Ωs

Ψ̃
∗
s(u− σ) [ρv]

F
S (σ) [∂tU ·nF→S] (σ, t) dσ. (7)

W [p](s, u, t) = c2sonW [ρ](s, u, t). (8)

where W [f ](s, · ) =
(
f ∗ Ψ̃

∗
s

)
denotes the wavelet coefficient of f for a given dilation/scale

parameter s, and [f ]12 = f1 − f2 denotes the jump of discontinuity of f across a boundary.
In these PDEs, it is important to emphasize the role played by the function

F̃ S−→F (s, u, t) : = −
∫
∂Ωf

Ψ̃
∗
s(u− σ) [p]

F
cF (σ, t) ·nF→cF (σ, t) dσ, (9)

which is a body force (per unit of length) applied by the underlying solid obstacles (and the outer
boundaries) to the homogenized fluid, across the whole space R2. It represents the resistance
that encounters the original fluid when flowing through the solid medium and impacting the
outer boundaries. The homogenization process thus transforms contact forces, localized on the
fluid-structure interfaces and outer boundaries, into a body force.

Besides, one can notice that the body force (9) depends on the original pressure field p,
which contains all the possible spatial scales that could be caught with a DNS computation of
the original fluid PDEs (a similar remark stands for the other boundary integrals). A closure
expression between the unresolved and resolved scales of the pressure field is thus required,
as in any homogenization or multi-scale method. Fortunately, conversely to plain filtering or
averaging techniques, CWT offers an inverse transform which brings us an analytical closure
expression, that one could formally write for simplicity :

p = CWT−1
[
(W [p](s, · ))s>0

]
. (10)

By limiting the number of wavelet coefficients retained in equation (10), it is thus possible
to reconstruct (up to an approximation), at each time step, the microscopic pressure field on the
fluid inner (and outer if necessary) boundaries, and to evaluate the body force applied by the
underlying solid obstacles. The same equation (10) also allows to reconstruct the density ρ and
velocity v, thus leading to the nonlinear convective term ρv ⊗ v and the corresponding wavelet
coefficientsW [ρv ⊗ v] (s, · ). CWT thus allows to tackle nonlinearities !

3 RESULTS AND DISCUSSION

The key ingredients of the model being recalled, let us now have a look at some prelimi-
nary numerical results. The homogenized fluid PDEs are hereafter discretized in space via a 1st
order finite-volume method with directional splitting. Thanks to the homogenization process,
this finite-volume method can be associated to a plain 2D regular Cartesian grid. Considering
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the fast-transient phenomenon at study, an Euler explicit scheme is chosen for the time dis-
cretization. The numerical fluxes at the interfaces are computed using an approximate Riemann
solver, namely Rusanov flux.

In order to confront the wavelet-based model with the Physics of interest, reference shock
waves propagating through a 10× 10 steady array of disks are computed at the DNS scale with
EUROPLEXUS software, a fast-transient dynamics code for fluids and structures. Figures 4-5
hereafter confront (with a 10 VS 1 bar initial pressure discontinuity) the reference pressure field
with the reconstructed pressure field, obtained by solving the spatially-filtered PDEs (6-7-8)
with the Mexican hat scaling function (instead of its wavelet), i.e. a low-pass filter of cutoff
scale s0. The constant Cstab below refers to the safety margin on the time step with respect to
the Courant-Friedrichs-Lewy stability condition. The constant h (= disk radius/4) refers to the
mesh size. With a steady array of disks, the wavelet-based model is thus able to reconstruct a
horizontal pressure profile which closely fits the reference data. Nevertheless, a high frequency
noise can be witnessed within the array of disks (delimited by the vertical black lines in Figure
5 below), which is explained by an aliasing phenomenon induced by the scaling function. This
noise can be reduced by increasing the cutoff scale s0.

0.0 0.1 0.2 0.3 0.4
x (m )

0.00

0.05

0.10

y
 (

m
)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x (m )

0.00

0.05

0.10

y
 (

m
)

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4
x (m )

0.00

0.05

0.10

y
 (

m
)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x (m )

0.00

0.05

0.10

y
 (

m
)

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4
x (m )

0.00

0.05

0.10

y
 (

m
)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x (m )

0.00

0.05

0.10

y
 (

m
)

0

2

4

6

8

10

Figure 4: Reconstructed (left) VS reference (right) pressure fields snapshots - s0 = 0.415h

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x (m )

2

4

6

8

10

P
re

ss
u

re
 p

ro
fi

le
 (

b
a

r)

reference

Cstab = 0.9, s0 = 0.415h

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x (m )

1

2

3

4

5

6

7

8

P
re

ss
u

re
 p

ro
fi

le
 (

b
a

r)

reference

Cstab = 0.9, s0 = 0.415h

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x (m )

2

4

6

8

10

P
re

ss
u

re
 p

ro
fi

le
 (

b
a

r)

reference

Cstab = 0.9, s0 = 0.415h

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x (m )

1

2

3

4

5

6

7

P
re

ss
u

re
 p

ro
fi

le
 (

b
a

r)

reference

Cstab = 0.9, s0 = 0.415h

Figure 5: Horizontal pressure profile - 10× 10 array - Cstab = 0.9 - s0 = 0.415h
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Preliminary numerical tests have also been realised to assess the model capability to treat
the coupling with moving solid obstacles. In Figure 6 below, the propagation of a 2D shock
wave through a 2 × 2 moving array of disks (radius = 10 mm) is considered. The aim of this
test was simply to recover, with the wavelet-based model equations, the theoretical behavior
of a linear oscillator that would be submitted to the (reconstructed) force applied by the fluid.
The simulation is designed with a 8 m long shock tube, in order to give time for the solid
medium motion to take place, and also prevent reflected waves on the outer boundaries from
interacting again with the solid medium. The solid medium equations (1) are discretized with
a classical (implicit) Newmark algorithm. The mesh size h is set to 1 mm, and (Cstab, s0) =
(0.9, 0.585h). The increased cutoff scale s0 here aims at suppressing the high frequency noise
previously witnessed. This allows us to recover, in Figure 6b below, a sinusoidal shape for
the horizontal displacement, which is coherent with the free theoretical response of a linear
oscillator (designed with the same mechanical parameters) in pseudo-periodic regime.
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(a) Zoom on the initial pressure field (2.5 vs 1 bar).
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Figure 6: Shock wave - 2× 2 moving array of disks.

4 CONCLUSION

This article briefly described the key ingredients of a new contribution in the wide lit-
erature of homogenization and multi-scale methods, here applied to transverse pressure waves
propagating within a congested solid medium. In a will to build a self-sustained model, which
can bypass the major limitations still encountered in literature, this work promotes an origi-
nal use of Continuous Wavelet Transform (CWT). A two-steps process of ”weak-extension” +
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”weak-convolution” of the original fluid PDEs with an analysing wavelet (or scaling function)
results in spatially-filtered PDEs governing an equivalent/homogenized fluid. The new variables
are moreover defined as the wavelet coefficients of the original variables. More importantly,
thanks to CWT and its inverse transform, the wavelet-based model possesses the brand new
ability to connect resolved and unresolved scales without any ad hoc model, and to rigorously
handle the original boundary conditions. It was also emphasized how the inverse wavelet trans-
form can be used to explicitly compute, if necessary, nonlinear terms. Several numerical tests
with steady solid obstacles allowed to assess the model capability to accurately reconstruct a 2D
reference pressure field, and thus the dynamic load applied to the solid medium. A preliminary
numerical test involving a 2 × 2 moving array of disks allowed to implement successfully a
first coupling between the equivalent/homogenized fluid and an underlying rigid solid medium
possessing 2 degrees of freedom. These early results shall be completed with additional testing
in order to build a robust 2D (and eventually 3D) fluid-structure solver.

Finally, the framework of the wavelet-based multi-scale and homogenized model can nat-
urally be applied to represent in a sparse way a generic continuum medium governed by con-
servation laws. This shall be the topic of an upcoming article.
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