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ABSTRACT
During irradiation in reactors, a variety of phenomena of different natures are occurring at
different scales. It is crucial to understand such phenomena and to be able to simulate their
evolution in time with a controlled accuracy. In this context, we propose to develop an efficient
numerical tool enabling us to perform accurate nonlinear quasi-static mechanical simulations
with evolving local phenomena. This tool is based on adaptive mesh refinement (AMR) tech-
niques. We adopt a fully automatic algorithm governed by user-prescribed tolerances on errors.
We show that the multilevel Local Defect Correction (LDC) method is the most efficient AMR
approach in terms of computation time to achieve desired precisions. Its key advantage lies in
the separate resolution of problems of limited sizes on a hierarchy of meshes evolving in time.

1 INTRODUCTION

Localized effects:
non-linearities, contact, 

concentrated forces, cracks, 
complex geometries, etc.

Contact zone 
(PCI)

Figure 1: Simulation of multiscale phenomena

In the nuclear field, the understanding of phe-
nomena occurring during irradiation, in par-
ticular through their numerical simulation, is
extremely important with regards to the safety
and design procedures. This work is encom-
passed in the framework of study of a wide
range of multiscale and multiphysical phe-
nomena occurring in Pressurized Water Re-
actor (PWR) during irradiation. We are in-
terested more precisely in the numerical sim-
ulation of the localized contact between the
fuel pellet and its surrounding cladding. This
phenomenon is called Mechanical Pellet-
Cladding Interaction (PCI) [1], cf. Figure 1.
In order to guarantee integrity of the cladding,
first barrier of confinement of fission products, this phenomenon must be studied and simulated
with the best precision. The approach currently applied in PLEIADES1 [2] consists in using a
conforming mesh a priori refined in the region of interest – pellet-cladding contact zone. Such
approach is not sufficiently predictive, elements in the critical region are not sufficiently fine,
and computations are costly. Thus, the main motivation of this work consists in proposing a
numerical tool allowing us to simulate multiscale problems with phenomena localized at the
structural scale in a precise (respecting user-prescribed accuracies) and efficient (in terms of

1Multi-concept fuel software environment for irradiated fuel elements in sub-assemblies for demonstration,
experimentation or service, co-developed by CEA (French Alternative Energies and Atomic Energy Commission,
www.cea.fr), EDF (Électricité de France, www.edf.fr) and FRAMATOME (ex-AREVA, www.framatome.com)
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memory space and computational time) ways. One of the major challenges is the possibility
to follow the evolution of a studied phenomenon in time in the case of nonlinear mechanical
behaviours (e.g. evolution of the PCI phenomenon).
2 ADAPTIVE MESH REFINEMENT ALGORITHM
To meet the aforementioned challenges, we adopt in this work an adaptive mesh refinement
(AMR) algorithm aiming to capture local phenomena at structural scale [7] by automatically
enriching the mesh in critical regions – regions with high discretization error2. The proposed al-
gorithm is fully automatic and governed by user-prescribed tolerances on errors. It is dedicated
to the hierarchical refinement of quadrilateral/hexahedral meshes appealing for their great ad-
vantages in industrial applications. Such algorithm follows an iterative refinement loop, whose
each iteration is based on a sequence of modules: SOLVE → ESTIMATE → MARK →
STOP → REFINE. These modules are briefly introduced hereafter. The interested reader is
referred to [3] for more detailed presentation of the refinement algorithm.

Among a wide range of AMR approaches available in the literature [4, 5, 6], we focus
on the methods targeting the mesh step h which have gained widespread success within solids
mechanics community due to their simplicity and efficiency in particular in presence of sin-
gularities [8]. Two main classes of h-based refinement methods have been integrated in the
proposed generic AMR algorithm, cf. Figure 2.

hierarchical conforming

h-adaptive technique

hierarchical non-conforming

h-adaptive technique

Region of 

interest

Level 0

Level 1

Level 2

multilevel Local Defect Correction technique

Multigrid-like iterative process with a sequence of three levels of meshes

Level 0

Level 1

Level 2

Initial coarse mesh

Figure 2: AMR methods based on the mesh step h refinement
The first class involves the well-known h-adaptive strategies [9], conforming and non-

conforming techniques, which aim to generate locally refined meshes covering the whole com-
putational domain, cf. Figure 2 left and middle. The conforming h-adaptive strategy aims to
generate a conforming locally refined mesh by propagating the refinement outside regions of in-
terest. The non-conforming technique consists in refining only elements in the region of interest
and thus generally leads to the appearance of hanging nodes (requiring a dedicated solver).

The second class of h-based AMR methods involves locally adaptive multigrid or multi-
level methods. These methods exploit the mesh refinement on several levels of meshes (nested
levels of meshes with finer and finer mesh sizes added locally), cf. Figure 2 right. The solu-
tion process consists in solving problems associated to different levels of meshes in a sequential
manner and coupling solutions through an iterative multigrid-like process based on prolongation
and restriction operators [10]. We adopt in this study the multilevel Local Defect Correction
(LDC) method [11, 12, 13] as it seems to be the most pertinent choice for solid mechanics prob-
lems with localized effects. The LDC prolongation operator is used to define Dirichlet boundary
conditions on the internal boundary of the next finer mesh levels by projecting the next coarser
solution. The restriction operator aims to obtain a restriction of the next finer solution on the

2behaving as O(hp) with h being the mesh step and p being the degree of interpolation function

Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, September 6–9, 2021



1308.3

coarse mesh, which serves to derive a residual (also called defect) acting as an additional source
term in the current level problem.

The aforementioned methods rely on the mesh step h refinement (REFINE) but exploit
conceptually different solution processes (SOLVE). In the generic algorithm, the module RE-
FINE takes into account the specificities of each considered here AMR method to construct re-
fined meshes (e.g. conservation of the mesh conformity, restriction of the non-conformity level,
or refinement on several levels). Furthermore, we integrate in the module SOLVE the solving
specificity of each AMR method (managing hanging nodes, carry out an iterative process for
multigrid methods...). These modules are formulated in such a way to be easily implementable
in industrial solvers, while being generic and suitable for different geometries, dimensions, etc.

Beyond the AMR strategies, the refinement algorithm involves the following modules.
The module ESTIMATE stands for the application of an error estimator [5] aiming to automat-
ically drive the mesh adaptation process. This module outputs an elementwise estimated error
distribution allowing us to detect the critical regions. In this study, the widely used recovery-
based Zienkiewicz and Zhu a posteriori error estimator [14] is adopted thanks to its robustness,
simplicity of implementation and performance (limited computational cost).

Based on the elementwise estimated error distribution, elements to be refined are detected
with the module MARK. Various detection criteria has been studied in [3]. In this paper, we
rely on the marked strategy based on the mesh optimality criterion introduced in [15] aiming to
control both, global and local errors.

The module STOP aims to turn off the AMR process when the solution computed at a
given refinement iteration respects the user-defined global and local accuracies. The global error
control, classical in the literature, consists in verifying if the estimated global discretization
error satisfies the prescribed tolerance εΩ. One of the novelties of this work is to control in
addition the local elementwise error which is important for industrial applications, but very little
studied in the literature. This local error is quantitatively evaluated by a local error parameter η
representing the measure of a discrete approximation of the critical region (set of elements
whose estimated local error exceeds the prescribed tolerance εΩ). This parameter is weighted
by the domain’s measure (thus, is expressed in percent for convenience), and is compared to the
user-prescribed one δ.
3 AMR METHODS COMPARISON
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Figure 3: 3D test case of the PCI

The previously presented algorithmic framework
allows us to numerically compare the chosen
AMR techniques in the most rigorous and objec-
tive way. For this comparative study we place our-
selves in a linear elastostatic framework. Denoting
Ω a bounded domain in RD (with D – the dimen-
sion) with ∂Ω its boundary, σ and ε the stress and
elastic strain tensors, u the displacement field and
C the fourth order elasticity tensor, the problem
reads:

div σ(u) = 0 in Ω

σ(u) = C : ε(u) in Ω

ε(u) =
1

2
(grad u+ gradT u) in Ω

Boundary conditions on ∂Ω

(1)

We present in this contribution the results of the test case representing the Mechanical Pellet-
Cladding interaction (PCI) phenomenon. We simulate the cladding’s response to the pellet
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modifications (the hourglass deformation and the pellet fragmentation) on a 3D test case de-
picted in Figure 3. Due to the discontinuous contact with the pellet, two crossed singularities
(axial and circumferential) of different characteristic length-scales are revealed in the cladding.
For symmetry reasons, the cladding in front of 1/32 of a pellet is represented. Computational
domain and boundary conditions are presented in Figure 3. The material of the cladding is
supposed to be linear elastic with Young’s modulus E = 1011 Pa and Poisson’s ratio ν = 0.3.
From the numerical point of view, finding an accurate solution to such problem is a challenging
task since it involves two stress singularities of different characteristic length scales in opposite
directions. Thereby, this problem justifies the necessity to apply an AMR strategy. We verify
here different global error tolerances εΩ, while the local error control parameter δ is set to 3%.
The reference solution is inaccessible for this problem, thus the estimated final errors are shown.
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Figure 4: Computed displacement field ux for εΩ = 4% on the final refined mesh for (left) the conform-
ing h-adaptive method (eest

glo = 1.44%), (center) non-conforming h-adaptive method (eest
glo = 1.93%) and

(right) on the hierarchy of meshes for the LDC method (eest
glo = 1.95%)
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Figure 5: AMR methods comparison for εΩ = 2%: total number of nodes (left) and CPU time (right)

Figures 4 and 5 present the main qualitative and quantitative results, respectively. In Figure 4 we
show the displacement fields in the x direction (plotted on the deformed configuration) obtained
with each studied AMR method for the global error tolerance εΩ = 4%. In Figure 5 the main
results in terms of the number of nodes and computational time for εΩ = 2% are depicted. First,
it has to be noted that all AMR techniques permit to reach the prescribed local precision (local
error control parameter respects fixed δ = 3%). It implies that the global accuracy is gener-
ally over-respected. We observe that the conforming h-refinement generates over-refined final
meshes requiring expensive computations. The final mesh of the non-conforming h-adaptive
approach is similar to the composite one of the LDC method. However, the non-conforming
h-refinement is more demanding in CPU time and requires a dedicated solver to handle hanging
nodes. The LDC approach leads to considerable computational savings thanks to its capability
to solve problems on a hierarchy of meshes of limited sizes.
Conclusions of the comparative study. Thanks to this comparative numerical study we show
that the multilevel LDC method is the most efficient AMR technique which permits to reach
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desired accuracies in an attractive computational cost (CPU time and memory space). This
opens the way to apply this approach on nonlinear solids mechanics problems.
Remark. In [3, 16] the same conclusions have been derived for other industrial and more aca-
demic numerical examples. In addition to the AMR methods comparison, we have revealed the
most efficient refinement strategy for quad/hexa meshes. It consists in combining the marking
criterion aiming to control global and local errors [15] and the refinement ratio fixed to 2.
4 AMR STRATEGY FOR NONLINEAR QUASI-STATIC PROBLEMS
4.1 Nonlinear quasi-static mechanical problem
In this study we place ourselves in a general nonlinear framework. The constitutive law of the
problem 1 thus reads:

σ(u) = F(ε(u), ε̇(u), ...) (2)
The solution of such problem is done by dividing the history into time steps. Generally, a
Newton-like algorithm is used at each time step to linearize the variational formulation of the
problem. With H a linearization operator, n the Newton’s iteration, and for all field v kinemat-
ically admissible to zero, after linearization we obtain the following variational form:∫

Ω

ε(v) : Hn−1 : ε(un − un−1) dΩ =

∫
ΓN

FN v dΓN −
∫

Ω

ε(v) : σn−1 dΩ = Rn−1 (3)

The iterative process tends to minimize the residual of the nonlinear problem written as:
Rn−1 = F ext − F int(σn−1) (4)

where σn−1 is updated at each iteration n using the nonlinear constitutive law 2.
4.2 Extension of the LDC method
We proposed in [7] a theoretical extension of the LDC method to quasi-static mechanical prob-
lems with nonlinear material behaviours and variable loadings.

The underlying idea of the LDC method is to make the global displacement tend towards
the restricted fine one in the region of interest. It is done in a weak sense via the LDC residual.
In the case of nonlinear problems, the LDC algorithm aims to update the nonlinear residual (cf.
Eq. 4) of problems associated to coarse mesh levels. Thus, in the region of interest this updated
residual can be seen as a minimization of the difference between internal forces computed
with the stress coming from restricted fine computations and internal forces computed in the
classical way. The key features related to the practical implementation of the LDC method
within a black-box nonlinear industrial solver are presented in [16, 17] The efficiency of the
LDC method as proposed in this work has been demonstrated on several numerical examples.
Remark. It is important to note that in the analytical study [7], we have developed a unified al-
gorithmic setting in which a large number of multiscale methods based on iterative coupling can
be integrated. The conceptual and algorithmic similarities between multilevel AMR methods
and numerical homogenization approaches have been highlighted. Moreover, we have shown
that the LDC technique can be seen as a meso-homogenisation approach suitable for problems
with small scale separation parameter where homogenization-based methods are limited.
4.3 Evolving mesh
The main challenge of this work is to propose a strategy based on moving refined mesh regions
which would allow us to capture the phenomenon evolution with a controlled precision. It has
to be highlighted that even though many studies have been conducted to propose efficient AMR-
based algorithms for time-dependent problems, several important issues, mainly associated with
field transfer and error control, still remain open. These questions have been addressed in this
thesis, cf. [16, 17].

In the nonlinear framework, as refined mesh is supposed to evolve between time steps,
an additional module TRANSFER has been introduced in the AMR algorithm detailed in sec-
tion 2. This module aims to define initial conditions on the mesh at the current time t based on
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the converged solution (in terms of the Newton iterations) obtained at the previous time t − 1.
It involves two key features: the fields transfer step and the equilibration step.

There exist two main types of fields to be transferred. For nodal quantities (e.g. displace-
ment), the basis functions of the previous mesh are generally used. The transfer of variables
known at integration points (e.g. stress, strain fields and internal variables) is generally more
complex and requires the use of a dedicated operator (precision/cost balance, minimization of
the numerical diffusion, ...). In our study we have proposed a precise and robust strategy aiming
to minimize the numerical diffusion. It lies on an elementwise extrapolation to discretisation
nodes, cf. [16] for more details.

Moreover, an important step consists in recovering the equilibrium of transferred fields.
We propose here an approach lying on the introduction of the initial non-equilibrated residual,
denoted Rt−1

ne , as a source term of the problem. This residual aims to minimize the initial non-
equilibrium (arising from the field transfer) and readsRt−1

ne = F ext,t−1−F int(σ̂t−1). It involves
internal forces F int(σ̂t−1) computed with σ̂t−1 – the stress field resulting from the projection
of σt−1 on the current refined mesh. The residual Rt−1

ne is added to the initial (standard) one
R̃0,t = F ext,t − F ext,t−1, as follows:

R0,t = R̃0,t +Rt−1
ne (5)

That returns in practice to consider the initial residual of the following form
R0,t = F ext,t − F int(σ̂t−1) (6)

The proposed strategy enables us to not accumulate the non-equilibrium residual and thus to ef-
ficiently control the error over time and to adapt the mesh when needed. The importance of this
equilibration step has been clearly shown in [16]. Moreover, no evaluation of the constitutive
law 2 is required in this equilibration step.
4.4 Numerical results on the PCI industrial benchmark
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Figure 6: Loading history

We consider here a numerical benchmark of the
PCI representing the transient stage with nonlinear
visco-plastic behaviour of the cladding and stress
singularities generated by variable pressures ex-
erted by the pellet [1]. The main problem setting
is detailed in Figure 3. Pressures prescribed on the
internal part of the modeled cladding are assumed
to vary linearly with time with two different slopes,
cf. Figure 6. The first slope corresponds to a con-
ditioning of the pellet (5 seconds), while the sec-
ond one to a transient of power (30 seconds). The
time step is considered to be equal to 1 second.

The cladding’s nonlinear behavior is characterized by a Norton creep constitutive law with-
out hardening. Here, the nonlinear strain is related to the stress through its velocity as ε̇nl =
( J
K

)n−1σd with n = 5 and K = 2.6 · 1011 Pa
5
4 s

1
4 two given material coefficients, σd the devia-

toric stress tensor and J the second invariant of σd. In this numerical example we set the global
error tolerance εΩ = 10% and the local error control parameter δ = 10%. The estimated final
errors are reported due to inaccessibility of the reference solution.

We present in Figure 7 the Von Mises stress fields obtained for various time steps on
composite LDC meshes (superposition of all mesh levels). At the beginning of the modeled
time history, the internal pressure is assumed to be constant, thus the refinement is not required
to meet the prescribed accuracy. While increasing pressure values applied to the different zones
and thus generating the gradual appearance of stress singularities, we observe the automatic
evolution of the refined mesh levels. We demonstrate the possibility to automatically add local
mesh levels with finer elements to follow the evolution of pressure singularities, cf. Figure 7.
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It has also to be emphasized that the proposed LDC-based refinement algorithm allows us to
generate meshes with much finer elements in the regions of interest than currently attainable in
PLEIADES, cf. [1]. It thus permits to reach better precision than ever.
Remark. It has also to be highlighted what we rely here on a proposed optimized refinement al-
gorithm enabling us to limit the number of remeshing over time (thanks to a proposed remeshing
indicator) while guaranteeing the verification of prescribed error tolerances, cf. [16, 17]. Thus,
only 5 remeshing have been automatically carried out for 35 time steps.
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Figure 7: Following in time of the PCI phenomenon with a visco-plastic model – evolving mesh levels
(composite meshes) of the LDC multilevel method
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Figure 8: Evolution of errors over time

Figure 8 presents the evolution of the esti-
mated global errors and local error measures
in time. We can see that very satisfying re-
sults in terms of reached accuracies have been
obtained: the prescribed global and local tol-
erances are generally well respected. We ob-
serve significant decrease of errors which are
related to remeshing. Especially, remeshes
are carried out at time steps following steps
where the local error measure exceeds the
prescribed tolerance. It would be possible
to avoid exceeding the prescribed thresholds
by redoing the computations at the same time
step, cf. [16].

CONCLUSIONS AND PERSPECTIVES
In this thesis we have proposed a powerful AMR algorithm allowing us to meet one of the
industrial challenges related to the Mechanical Pellet-Cladding Interaction simulation. Based
on the multilevel Local Defect Correction method, it permits us to reach currently inaccessible
accuracies in an attractive computational cost (CPU time and memory space). Moreover, the
natural ability of LDC to generate a hierarchy of meshes evolving in time permits to dynamically
follow the temporal evolution of the studied phenomenon. We have illustrated the efficiency of
the proposed algorithms on a range of mechanical (academic and complex industrial) problems
with localized effects of different complexities. Motivated by a specific nuclear problem, a great
deal of effort has been consecrated to propose generic and transversal algorithms, which opens
ways to apply them to engineering fields other than those of nuclear fuel.
As perspective, it would be interesting to explore the capacity of the LDC approach to address
different type of problems (other material behaviors, dynamic problems, large deformations,
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crack propagation, etc.). Another perspective of this work is to add the pellet-cladding contact
for a more efficient simulation of the PCI phenomenon. It would also be interesting to treat the
multiphysics coupling.
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