

Method for Analysis of Neutron Activation Measurements of Am-241 with Uncertainty Propagation

Gašper Žerovnik, Vladimir Radulović, Ljudmila Benedik, Bor Kos

Jožef Stefan Institute Jamova cesta 39 SI-1000 Ljubljana, Slovenia gasper.zerovnik@ijs.si, vladimir.radulovic@ijs.si, ljudmila.benedik@ijs.si, bor.kos@ijs.si

Tjaž Gantar

University of Ljubljana, Faculty of Mathematics and Physics Jadranska ulica 19 SI-1000 Ljubljana, Slovenia tjaz.gantar@student.fmf.uni-lj.si

Gilles Noguère

CEA Cadarache F-13108 St. Paul lez Durance Cedex gilles.noguere@cea.fr

ABSTRACT

With the aim of estimating thermal neutron capture cross section in ²⁴¹Am, samples containing ²⁴¹Am were irradiated in the central channel of the TRIGA reactor at the Jožef Stefan Institute (JSI), both with and without cadmium transmission filter. The neutron fluence was monitored by ⁵⁹Co(n, γ), ¹⁹⁷Au(n, γ) and ⁵⁸Ni(n,p) reactions. α -particle activity of ²⁴²Cm, the decay product of the activation product ^{242g}Am, was measured alongside with γ -ray activities of activation products of the monitor reactions. Reaction rates were calculated from the measured detector count rates, using full uncertainty propagation. The final uncertainties are $\sim 1\%$. Due to use of two independent measurement techniques, the final reaction rate covariance matrix can be divided into two separate blocks, and the correlation coefficients assume values 0.4-0.8.

1 INTRODUCTION

²⁴¹Am is an important component of spent nuclear fuel due to its contribution to the decay heat. Due to its inherent γ-ray emission, time-of-flight (TOF) measurements of ²⁴¹Am capture cross section are difficult. Therefore, there is a potential to obtain a more accurate ²⁴¹Am thermal neutron capture cross section value using neutron activation measurements. This value may serve for normalisation of the energy dependent capture yields measured by TOF. Neutron activation analysis of ²⁴¹Am is comparatively complex. First, ²⁴¹Am cross section contains a resonance below Cd transmission filter cut-off energy (~ 0.55 eV) and another one overlapping with that energy. Second, the activation product is produced in both ground (^{242g}Am) and metastable (^{242m}Am) state, and the latter has a much longer half-life (141 years for ^{242m}Am vs. ~ 16 h for ^{242g}Am). And finally, the decay scheme of activation products is relatively complicated. γ -ray spectrometry of activation products is difficult due to low γ -ray energies and increased γ -ray background from e.g. ²⁴¹Am fission products.

Therefore, the only realistic option is α -particle spectrometry, originating from ²⁴²Cm, which is a decay product of ^{242g,m}Am. Due to the much longer half-life of ^{242m}Am and a relatively small branching fraction for its production by neutron capture (~ 0.09), its contribution to the ²⁴²Cm activity is very low in absolute terms and negligible compared to the contribution from ^{242g}Am for a few years after irradiation.

An experiment was performed at the JSI TRIGA reactor, where samples of ²⁴¹Am deposited from solution were irradiated with the ultimate goal to improve the ²⁴¹Am(n, γ)^{242g}Am thermal neutron cross section value, which is burdened with a relatively high combined weighted average uncertainty of ~ 2% [1, 2]. ^{242g}Am decay with half-life of 16.02(2) h [3] with probability (branching fraction) 82.7(3) % [3] (83.1 % according to DDEP [4]) to ²⁴²Cm. The latter is a practically 100 % α -particle emitter with a half-life of 162.8(2) d [5].

For more accurate determination of the neutron fluence, ${}^{59}\text{Co}(n,\gamma)$, ${}^{197}\text{Au}(n,\gamma)$ and ${}^{58}\text{Ni}(n,p)$ reactions were chosen as monitor materials. Each measurement set consists of two irradiations, one with and one without a cadmium transmission filter with thickness 1.10 mm ± 0.05 mm. The activities of samples of monitor materials are measured by a γ -ray spectrometer.

The first step is to determine the specific reaction rates starting from the measured count rates from the α -particle spectrometer for ²⁴²Cm and γ -ray spectrometer from ⁶⁰Co, ⁵⁸Ni and ¹⁹⁸Au. The specific ²⁴¹Am(n, γ)^{242g}Am reaction rate will be determined as a ratio to ²⁴¹Am activity, determined from the same α -particle spectrometric measurement as the ²⁴²Cm activity. For other reactions, the specific reaction rates will be determined taking into account the nominal masses of the irradiated samples.

2 NEUTRON IRRADIATIONS AND ACTIVATION MEASUREMENTS

Irradiations were performed in the central irradiation channel (CC) of the JSI TRIGA reactor. Two sequential measurements were performed. The properties of the irradiated samples, irradiation and measurement conditions are given in Tables 1 and 2. During both irradiations, the core was in configuration No. 242.

Table 1: Irradiation conditions and properties of the samples. C_{α} represents the total α -particle count rate within measurement time $t_{m,\alpha}$, whereas t_{irr} is the irradiation time at constant power. The values in round brackets represent the absolute uncentainties, corresponding to the last digit(s).

Irradiation	1 (Cd cover)	2 (no Cd)
Cd cover	yes	no
t_{irr}	36000(1) s	36000(1) s
$C_{\gamma}(^{241}\text{Am})$	102409(699)	249883(632)
$t_{m,\gamma}(^{241}\mathrm{Am})$	527735(1) s	768468(1) s
$C_{\alpha}(^{241}\text{Am})$	3342055(1828)	1038473(1019)
$t_{m,\alpha}(^{241}\mathrm{Am})$	344003(1) s	177615(1) s
$m(^{59}{ m Co})$	4.364(52) μg	4.725(57) μg
$m(^{58}Ni)$	178.2(2) mg	192.6(11) mg
$m(^{197}\mathrm{Au})$	5.787(35) µg	5.747(34) µg

The γ -ray detector efficiencies η were determined by means of the MMCNP-6.1.1 [6] and a computational model of the source-detector configuration using electron/photon/relaxation

Irradiation	F	1 (Cd cover)	2 (no Cd)		
	E_{γ}	I (Cu cover)	2 (110 Cu)		
Cd cover		yes	no		
t_{irr}		36000(1) s	36000(1) s		
$t_c(Am)$		418595(1) s	1015660(1) s		
$t_m(Am)$		344003(1) s	177615(1) s		
$C(^{242}\text{Cm})$		61224(247)	120057(346)		
$\bar{\eta}(Cm)$		$1.433(\overline{27}) \times 10^{-3}$			
$t_c(Co)$		782393(1) s	426439(1) s		
t_m (Co)		179680(1) s	243805(1) s		
C(⁶⁰ Co)	1173 keV	34164(222)	255213(703)		
	1332 keV	31775(204)	238274(1016)		
$t_c(\mathrm{Au})$		758557(1) s	672264(1) s		
$t_m(Au)$		10800(1) s	10800(1) s		
$C(^{198}\mathrm{Au})$	411.8 keV	2136909(5193)	4367877(2125)		
$t_c(Ni)$		577917(1) s	1099245(1) s		
$t_m(Ni)$		312037(1) s	10800(1) s		
C(⁵⁸ Co)	810.8 keV	70638964(8457)	2652964(1637)		

Table 2: Parameters of the spectrometric measurements, including cooling times t_c between end of irradiation and start of measurement.

data library eprdata12 [7]. The corresponding covariances were estimated by variation of key geometrical parameters within their uncertainties (a detailed study is available in Ref. [8]) and are given in Table 3. The main sources of uncertainty were the detector dead layer, source to detector distance and a fitted normalisation constant. Uncertainties due to photo-atomic nuclear data and detector response function were considered negligible.

Table 3: γ -ray detector efficiencies at energies 411.8 keV, 810.8 keV, 1173 keV and 1332 keV and components of the corresponding covariance matrix.

E_{γ}	η	411.8 keV	810.8 keV	1173 keV	1332 keV
411.8 keV	1.514×10^{-3}	1.43×10^{-10}	7.51×10^{-11}	5.83×10^{-11}	5.30×10^{-11}
810.8 keV	9.446×10^{-4}	7.51×10^{-11}	5.01×10^{-11}	3.49×10^{-11}	3.16×10^{-11}
1173 keV	7.392×10^{-4}	5.83×10^{-11}	3.49×10^{-11}	3.06×10^{-11}	2.79×10^{-11}
1332 keV	6.775×10^{-4}	5.30×10^{-11}	2.79×10^{-11}	2.79×10^{-11}	2.59×10^{-11}

3 CORRESPONDENCE BETWEEN REACTION RATES AND COUNT RATES

3.1 241 Am(n, γ) 242g Am

Neglecting the contribution from 242m Am, the following is valid during irradiation:

$$\frac{\mathrm{d}N_{Amg}}{\mathrm{d}t} = R_{Am,g} - \lambda_{Amg}N_{Amg}, \qquad \frac{\mathrm{d}N_{Cm}}{\mathrm{d}t} = k_{\beta^{(-)}}\lambda_{Amg}N_{Amg} - \lambda_{Cm}N_{Cm}, \qquad (1)$$

where the indices Amg and Cm refer to ${}^{242g}Am$ and ${}^{242}Cm$, respectively, $R_{Am,g}$ is the ${}^{241}Am(n,\gamma){}^{242g}Am$ reaction rate and $k_{\beta^{(-)}}$ is the branching fraction for β^- decay of ${}^{242}Cm$.

Assuming constant $R_{Am,g}$ and zero initial condition for both nuclides, after irradiation time t_{irr} and cooling time t_c , the expected number of α -particle detector counts C_{Cm} , originating from ²⁴²Cm decay, within a measurement time t_m equals:

$$C_{Cm} = \frac{\eta_{Cm} k_{\beta^{(-)}} R_{Am,g}}{\lambda_{Amg} - \lambda_{Cm}} \times$$

$$\left[\frac{\lambda_{Amg}}{\lambda_{Cm}} \left(1 - e^{-\lambda_{Cm} t_{irr}} \right) e^{-\lambda_{Cm} t} \left(1 - e^{-\lambda_{Cm} t_m} \right) + \frac{\lambda_{Cm}}{\lambda_{Amg}} \left(1 - e^{-\lambda_{Amg} t_{irr}} \right) e^{-\lambda_{Amg} t} \left(1 - e^{-\lambda_{Amg} t_m} \right) \right]$$
(2)

where η_{Cm} is the detection efficiency for the α -particles originating from ²⁴²Cm decay and α -particle emission probability of 1 was assumed for the ²⁴²Cm decay. Eq. (2) represents a general solution for the count rate of ²⁴²Cm decays, assuming a constant ²⁴¹Am(n, γ)^{242g}Am reaction rate and cooling time short compared to ^{242m}Am half-life.

Assuming that the cooling time is long compared to 242g Am half-life (i.e. $t_c \gg t_{1/2}(^{242g}$ Am)):

$$C_{Cm} \simeq \frac{\eta_{Cm} k_{\beta^{(-)}} R_{Am,g}}{\lambda_{Amg} - \lambda_{Cm}} \frac{\lambda_{Amg}}{\lambda_{Cm}} \left(1 - e^{-\lambda_{Cm} t_{irr}} \right) e^{-\lambda_{Cm} t_c} \left(1 - e^{-\lambda_{Cm} t_m} \right).$$
(3)

The number of detected α -particles, originating from ²⁴¹Am decay, equals:

$$C_{Am241} = N_{Am241}\lambda_{Am241}t_m,\tag{4}$$

assuming that the irradiation, cooling and measurement times are all small compared to the half-life of ²⁴¹Am (432.7 years), and negligible depletion of ²⁴¹Am during irradiation.

Finally, the specific 241 Am $(n,\gamma)^{242g}$ Am reaction rate can be expressed as:

$$r_g \simeq \frac{C_{Cm}}{C_{Am241}} \frac{\lambda_{Am241} \lambda_{Cm} (\lambda_{Amg} - \lambda_{Cm})}{\lambda_{Amg}} \frac{\eta_{Am}}{\eta_{Cm}} \frac{t_m}{k_{\beta^{(-)}}} \left[\left(1 - e^{-\lambda_{Cm} t_{irr}} \right) e^{-\lambda_{Cm} t_c} \left(1 - e^{-\lambda_{Cm} t_m} \right) \right]^{-1}.$$
(5)

3.2 59 Co(n, γ) 60 Co

Assuming constant ⁵⁹Co(n, γ)⁶⁰Co reaction rate R_{Co} during irradiation, a short irradiation time in comparison with ⁶⁰Co half-life, no ⁶⁰Co removal due to neutron capture, and a comparatively short measurement time t_m :

$$C_{Co,j} \simeq \eta_{Co,j} P_{\gamma,Co,j} \lambda_{Co} R_{Co} t_{irr} t_m \mathrm{e}^{-\lambda_{Co} t_c},\tag{6}$$

where the index j refers to γ -rays of a characteristic energy, $\eta_{Co,j}$ is the γ -ray detector efficiency at the corresponding γ -ray energy and $P_{\gamma,Co,j}$ is the emission probability for the corresponding γ -ray energy.

Thus, for each characteristic γ -ray energy, an estimate for the specific ${}^{59}\text{Co}(n,\gamma){}^{60}\text{Co}$ reaction rate is obtained:

$$r_{Co,j} = \frac{R_{Co,j}}{N_{Co59}} = \frac{C_{Co,j}}{\eta_{Co,j} P_{\gamma,Co,j} \lambda_{Co} N_{Co59} t_{irr} t_m} e^{\lambda_{Co} t_c},$$
(7)

The final estimate for R_{Co} is then a weighted average over all characteristic γ -ray energies. For ⁶⁰Co, characteristic γ -rays with energies of 1173.228(3) keV and 1332.492(4) keV and emission probabilities of 0.9985(3) and 0.999826(6) [9], respectively, were used.

3.3 197 Au(n, γ) 198 Au

Assuming constant ¹⁹⁷Au(n, γ)¹⁹⁸Au reaction rate R_{Au} during irradiation, no ¹⁹⁸Au removal due to neutron capture, and a comparatively short measurement time t_m :

$$C_{Au,j} \simeq \eta_{Au,j} P_{\gamma,Au,j} R_{Au} t_m \left(1 - e^{-\lambda_{Au} t_{irr}} \right) e^{-\lambda_{Au} t_c}.$$
(8)

Thus, for each characteristic γ -ray energy, an estimate for the specific ${}^{197}Au(n,\gamma){}^{198}Au$ reaction rate is obtained:

$$r_{Au,j} = \frac{R_{Au,j}}{N_{Au197}} = \frac{C_{Au,j}}{\eta_{Au,j} P_{\gamma,Au,j} N_{Au197} t_m} e^{\lambda_{Au} t_c} \left(1 - e^{-\lambda_{Au} t_{irr}}\right)^{-1},$$
(9)

The final estimate for R_{Au} is then a weighted average over all characteristic γ -ray energies. For ¹⁹⁸Au, the characteristic γ -ray with energy of 411.80205(17) keV and emission probability of 0.9562 [10] were used.

3.4 ⁵⁸Ni(n,p)⁵⁸Co

Assuming constant ⁵⁸Ni(n,p)⁵⁸Co reaction rate R_{Ni} during irradiation, no ⁵⁸Co removal due to neutron capture, and a comparatively short measurement time t_m :

$$C_{Cop,j} \simeq \eta_{Cop,j} P_{\gamma,Cop,j} R_{Ni} t_m \left(1 - e^{-\lambda_{Cop} t_{irr}} \right) e^{-\lambda_{Cop} t_c}.$$
(10)

Thus, for each characteristic γ -ray energy, an estimate for the specific ⁵⁸Ni(n,p)⁵⁸Co reaction rate is obtained:

$$r_{Ni,j} = \frac{R_{Ni,j}}{N_{Ni58}} = \frac{C_{Cop,j}}{\eta_{Cop,j} P_{\gamma,Cop,j} N_{Ni58} t_m} e^{\lambda_{Cop} t_c} \left(1 - e^{-\lambda_{Cop} t_{irr}}\right)^{-1},$$
(11)

The final estimate for R_{Ni} is then a weighted average over all characteristic γ -ray energies. For ⁵⁸Co, the characteristic γ -ray with energy of 810.7593(20) keV and emission probability of 0.99450 [11] were used.

4 UNCERTAINTY PROPAGATION

For uncertainty propagation it is important to note that the components of uncertainty, common to different specific reaction rates, are: detector efficiencies η (for α -particles and γ -ray separately), branching fraction for the decay of ^{242g}Am, (some) γ -ray emission probabilites.

Other sources of uncertainty, such as e.g. the detector count rates, samples masses and activities, are in principle independent for each measurement and can be treated as such.

Some sources of uncertainty may be neglected: all decay constants, all times (irradiation, cooling, measurement), (some) γ -ray emission probabilites, ²⁴²Cm α -particle emission probabilities with energies above the highest ²⁴¹Am α -particle emission energy 5545 keV.

4.1 241 **Am**(**n**, γ) 242g **Am**

The parameters in Eq. (5) with non-negligible uncertainties are: C_{Cm} , C_{Am241} , η_{Am} , η_{Cm} and $k_{\beta^{(-)}}$. $k_{\beta^{(-)}} = 0.832(6)$ was adopted from the JEFF-3.1.1 [12] nuclear data library. If the ratio of α -particle detection efficiencies is treated as a single parameter $k_{\eta} = \eta_{Am}/\eta_{Cm} \sim 1$, the relative uncertainty $\delta r_g/r_g$ of the ²⁴¹Am(n, γ)^{242g}Am reaction rate can be expressed as sum of squares of the relative uncertainties of the individual components:

$$\frac{\delta r_g}{r_g} = \sqrt{\left(\frac{\delta C_{Cm}}{C_{Cm}}\right)^2 + \left(\frac{\delta C_{Am241}}{C_{Am241}}\right)^2 + \frac{4(\delta T_{Cm})^2}{C_{Cm}C_{Am241}} + (\delta k_\eta)^2 + \left(\frac{\delta k_{\beta^{(-)}}}{k_{\beta^{(-)}}}\right)^2}, \quad (12)$$

which are assumed to be uncorrelated, except C_{Cm} and C_{Am241} , for which the expression from Ref. [13] was used. Here, δT_{Cm} denotes the uncertainty in the overlap count rate between ²⁴¹Am and ²⁴²Cm ($\delta T_{Cm} = 110$, $\delta T_{Cm,Cd} = 93$).

For separate ²⁴¹Am irradiations / ²⁴²Cm measurements, e.g. with and without Cd cover, the common uncertainty originates from k_{η} and $k_{\beta^{(-)}}$, whereas the uncertainty originating from the measured count rates is uncorrelated by nature:

$$\frac{\operatorname{cov}(r_g, r_{g,Cd})}{r_g r_{g,Cd}} = \operatorname{cov}\left(\frac{k_\eta}{k_{\beta^{(-)}}}, \frac{k_\eta}{k_{\beta^{(-)}}}\right) \left/ \left(\frac{k_\eta}{k_{\beta^{(-)}}}\right)^2 = (\delta k_\eta)^2 + \left(\frac{\delta k_{\beta^{(-)}}}{k_{\beta^{(-)}}}\right)^2$$
(13)

4.2 59 Co(n, γ) 60 Co

The parameters in Eq. (7) with non-negligible uncertainties are: $C_{Co,1}$, $C_{Co,2}$, $\eta_{Co,1}$, $\eta_{Co,2}$ and N_{Co59} . The relative uncertainty $\delta r_{Co,j}/r_{Co,j}$ of the ⁵⁹Co(n, γ)⁶⁰Co reaction rate, derived from each of the two prominent γ -ray peaks can be expressed as sum of squares of the relative uncertainties of the individual components:

$$\frac{\delta r_{Co,j}}{r_{Co,j}} = \sqrt{\left(\frac{\delta C_{Co,j}}{C_{Co,j}}\right)^2 + \left(\frac{\delta \eta_{Co,j}}{\eta_{Co,j}}\right)^2 + \left(\frac{\delta N_{Co59}}{N_{Co59}}\right)^2}.$$
(14)

From the count rates, corresponding to both peaks, a weighted averages is calculated:

$$r_{Co} = \left(\frac{r_{Co,1}}{(\delta r_{Co,1})^2} + \frac{r_{Co,2}}{(\delta r_{Co,2})^2}\right) \left(\frac{1}{(\delta r_{Co,1})^2} + \frac{1}{(\delta r_{Co,2})^2}\right)^{-1}.$$
(15)

This weighted average is unbiased and ensures numerical stability, however it does not yield lowest combined uncertainty:

$$\frac{\delta r_{Co}}{r_{Co}} = \sqrt{(\delta r_{Co,1})^2 + (\delta r_{Co,2})^2 + 2\text{cov}(r_{Co,1}, r_{Co,2})} / \left(r_{Co,1} \frac{\delta r_{Co,2}}{\delta r_{Co,1}} + r_{Co,2} \frac{\delta r_{Co,1}}{\delta r_{Co,2}} \right)$$
(16)

$$\operatorname{cov}(r_{Co,1}, r_{Co,2}) = K_{Co}^2 \frac{C_{Co,1} C_{Co,2}}{P_{\gamma,Co,1} P_{\gamma,Co,2}} \frac{\operatorname{cov}(\eta_{Co,1}, \eta_{Co,2})}{\eta_{Co,1}^2 \eta_{Co,2}^2}, \qquad K_{Co} = \frac{\mathrm{e}^{\lambda_{Co} t_c}}{\lambda_{Co} N_{Co59} t_{irr} t_m}.$$

For separate ⁵⁹Co irradiations / ⁶⁰Co measurements, e.g. with and without Cd cover, the common uncertainty originates from $\eta_{Co,j}$, whereas the uncertainties originating from the measured count rates and sample ⁵⁹Co masses are uncorrelated by nature:

$$\frac{\operatorname{cov}(r_{Co}, r_{Co,Cd})}{r_{Co}r_{Co,Cd}} = (17)$$

$$= \frac{\frac{r_{Co1}}{(\delta r_{Co1})^2} \frac{r_{CoCd1}}{(\delta r_{CoCd1})^2} \left(\frac{\delta \eta_{Co1}}{\eta_{Co1}}\right)^2 + \frac{r_{Co2}}{(\delta r_{Co2})^2} \frac{r_{CoCd2}}{(\delta r_{CoCd2})^2} \left(\frac{\delta \eta_{Co2}}{\eta_{Co2}}\right)^2 + \left[\frac{r_{Co1}}{(\delta r_{CoC1})^2} \frac{r_{CoCd2}}{(\delta r_{CoCd2})^2} + \frac{r_{Co2}}{(\delta r_{CoCd1})^2} \frac{r_{CoCd1}}{(\delta r_{CoCd1})^2}\right] \frac{\operatorname{cov}(\eta_{Co1}, \eta_{Co2})}{\eta_{Co1}\eta_{Co2}}}{\left(\frac{r_{Co1}}{(\delta r_{Co1})^2} + \frac{r_{Co2}}{(\delta r_{CoCd1})^2} + \frac{r_{CoCd2}}{(\delta r_{CoCd1})^2}\right)}{\left(\frac{r_{CoCd1}}{(\delta r_{CoCd1})^2} + \frac{r_{CoCd2}}{(\delta r_{CoCd1})^2} + \frac{r_{CoCd2}}{(\delta r_{CoCd2})^2}\right)}$$

4.3 197 Au(n, γ) 198 Au and 58 Ni(n,p) 58 Co

The parameters with non-negligible uncertainties are: C_x , η_x and N_x , where x denotes Au or Ni. The relative uncertainty $\delta r_x/r_x$ can be expressed as sum of squares of the relative uncertainties of the individual components:

$$\frac{\delta r_x}{r_x} = \sqrt{\left(\frac{\delta C_x}{C_x}\right)^2 + \left(\frac{\delta \eta_x}{\eta_x}\right)^2 + \left(\frac{\delta N_x}{N_x}\right)^2}.$$
(18)

For separate irradiations of x, e.g. with and without Cd cover, the common uncertainty originates from η_x , whereas the uncertainties originating from the measured count rates and sample masses are uncorrelated by nature:

$$\frac{\operatorname{cov}(r_x, r_{x,Cd})}{r_x r_{x,Cd}} = \left(\frac{\delta \eta_x}{\eta_x}\right)^2.$$
(19)

Since 58 Ni(n,p) is a threshold reaction, no noticable difference between the measurements with and without Cd cover is expected. These two measurements can serve as an additional neutron fluence monitor, taking into account the correction factor for the Cd transmission function.

4.4 Cross-material covariances

Fhe following cross-terms are valid for all combinations with and without Cd cover:

$$\frac{\operatorname{cov}(r_{Au}, r_{Ni})}{r_{Au}r_{x,Ni}} = \eta_{Au}\eta_{Ni}\operatorname{cov}\left(\frac{1}{\eta_{Au}}, \frac{1}{\eta_{Ni}}\right) = \frac{\operatorname{cov}(\eta_{Au}, \eta_{Ni})}{\eta_{Au}\eta_{Ni}},\tag{20}$$

$$\operatorname{cov}(r_{G_{u}}, r_{u}) = \frac{r_{Co1}}{(5\pi)^{2}}\frac{\operatorname{cov}(\eta_{Co1}, \eta_{x})}{\pi} + \frac{r_{Co2}}{(5\pi)^{2}}\frac{\operatorname{cov}(\eta_{Co2}, \eta_{x})}{\pi}$$

$$\frac{cov(r_{Co}, r_x)}{r_{Co}r_x} = \frac{\frac{1}{(\delta r_{Co1})^2} \frac{1}{\sigma(r_{Co1})^2} + \frac{1}{(\delta r_{Co2})^2} \frac{1}{\sigma(r_{Co2})^2}}{\frac{1}{(\delta r_{Co2})^2} + \frac{1}{(\delta r_{Co2})^2}}{\frac{1}{(\delta r_{Co2})^2}}.$$
(21)

4.5 Summary – final reaction rate vector and covariance matrix

The final reaction rate covariance matrix can be divided into two uncorrelated blocks. The first block consists of ${}^{241}Am(n,\gamma){}^{242g}Am$ reaction rates (Table 4), and the second block of all other reaction rates (Table 5), which are correlated via the γ -ray detector efficiency.

Table 4: ${}^{241}Am(n,\gamma){}^{242g}Am$ reaction rates and corresponding correlation matrix components.

sample	r / s^{-1}	Am	Am(Cd)
Am	$4.185(33) \times 10^{-9}$	1	0.798
Am(Cd)	$6.465(54) \times 10^{-10}$	0.798	1

The relative reaction rates are highest for ²⁴¹Am(n, γ), then ¹⁹⁷Au(n, γ) and ⁵⁹Co(n, γ), which is in accordance with the neutron spectrum averaged cross sections for these reactions. As expected, the reaction rates under Cd filter are significantly lower for these non-threshold reactions. For ⁵⁸Ni(n,p), the reaction rates are several orders of magnitude lower due to much lower cross section and contribution from only fast neutrons. Due to the latter, the relative difference between the cases with and without Cd cover is < 10%. The final uncertainties are of the order of 1%, which is within the acceptable limits. The correlations are highest for both measurements with samples containing Am due to the use of the same α -particle spetrometer and nuclear data, whereas the contributions of the independent component, i.e. the detector count rates, to the final uncertainty, is smaller than for other samples.

sample	r / s^{-1}	Au	Au(Cd)	Ni	Ni(Cd)	Со	Co(Cd)
Au	$1.163(11) \times 10^{-9}$	1	0.616	0.563	0.701	0.450	0.430
Au(Cd)	$7.306(75) \times 10^{-10}$	0.616	1	0.543	0.677	0.434	0.415
Ni	$3.638(34) \times 10^{-14}$	0.563	0.543	1	0.785	0.451	0.431
Ni(Cd)	$3.416(26) \times 10^{-14}$	0.701	0.677	0.785	1	0.562	0.537
Co	$1.944(23) \times 10^{-10}$	0.450	0.434	0.451	0.562	1	0.393
Co(Cd)	$3.823(47) \times 10^{-11}$	0.430	0.415	0.431	0.537	0.393	1

Table 5: ¹⁹⁷Au(n, γ), ⁵⁸Ni(n,p) and ⁵⁹Co(n, γ) reaction rates and corresponding correlation matrix components.

5 CONCLUSIONS

Reaction rates were calculated starting from the measured detector count rates, using full uncertainty propagation. Notable uncertainty components include, sample masses, branching fraction for β^- decay of 242g Am and detector efficiencies. The latter two induce correlations between samples, whereas other uncertainty components can be treated as independent. The final uncertainties range from 0.8% to 1.2%. The final reaction rate covariance matrix can be divided into two separate blocks, one for samples containing americium, and one for all other samples. The correlation coefficients within a single block typically range between 0.4 and 0.8, which indicates that the detector efficiency and branching fraction for β^- decay of 242g Am are dominant sources of uncertainty, and that the reaction rates cannot be treated separately.

ACKNOWLEDGMENTS

The research was funded by ARRS as a bilateral project with CEA Cadarache: NC-0005, Determination of the Am-241 thermal neutron capture cross section by activation measurements at the JSI TRIGA reactor (BI-FR/CEA/18-20-005).

REFERENCES

- G. Žerovnik et. al., "Systematic effects on cross section data derived from reaction rates in reactor spectra and a re-analysis of ²⁴¹Am reactor activation measurements," Nucl. Instr. Meth. A, 877, 2018, pp. 300–313.
- [2] K. Mizuyama, N. Iwamoto, O. Iwamoto, "Correction of the thermal neutron capture cross section of ²⁴¹Am obtained by the Westcott convention," J. Nucl. Sci. Technol., 54, 2017, pp. 74–80.
- [3] Y. A. Akovali, "Nuclear Data Sheets for A = 242," Nucl. Data Sheets 96, 2002, pp. 177– 239.
- [4] R. G. Helmer, E. Browne, M.-M. Bé, "International Decay Data Evaluation Project," J. Nucl. Sci. Technol., Suppl. 2, 2002, pp. 455–458.
- [5] E. Browne, J. K. Tuli, "Nuclear Data Sheets for A = 238," Nucl. Data Sheets, 127, 2015, pp. 191–332.
- [6] M. R. James et. al., "MCNP6 Users Manual. Code Version 6.1.1 Beta," Report LA-CP-14-00745, Los Alamos National Laboratory, 2014.

- [7] H. G. Hughes, "An Electron/Photon/Relaxation Data Library for MCNP6," Report LA-UR-13-27377, Rev. 1, Los Alamos National Laboratory, 2015.
- [8] T. Gantar, V. Radulović, G. Žerovnik, "Characterisation of efficiencies of HPGe gammaray detectors at JSI," Report IJS-DP-13788, Jožef Stefan Institute, 2021.
- [9] E. Browne, J. K. Tuli, "Nuclear Data Sheets for A = 60," Nucl. Data Sheets, 114, 2013, pp. 1849–2022.
- [10] H. Xiaolong, K. Mengxiao, "Nuclear Data Sheets for A = 198," Nucl. Data Sheets, 133, 2016, pp. 221–416.
- [11] C. D. Nesaraja, S. D. Geraedts, B. Singh, "Nuclear Data Sheets for A = 58," Nucl. Data Sheets, 111, 2010, pp. 897–1092.
- [12] A. Santamarina et. al., "The JEFF-3.1.1 Nuclear Data Library," JEFF report 22, OECD, Paris, 2009.
- [13] S. Pommé, "Typical uncertainties in alpha-particle spectrometry," Metrologia, 52, 2015, pp. S146–S155.

Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, September 6–9, 2021