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ABSTRACT 

For this paper, the optimization of the SFAs arrangement in the casks was performed 

based on the advanced optimization algorithms such as Differential Evolution, Particle Swarm 

Optimization, and Sine Cosine Algorithm. The algorithms were adopted for the problem of 

interest and implemented in the MATLAB code. Each loading campaign was treated separately 

due to limitations such as minimal cooling time of 5 years in the SFP after a SFA is taken out 

of the reactor core. The starting time of each campaign and number of relocated elements is the 

same as in real NEK SFDS project. The decay heats of the SFAs were calculated based on the 

foreseen operational history using the ORIGEN-S from the SCALE6.2.4 code package. The 

optimization criterion was a uniformly distributed decay heat among the casks in each loading 

campaign. The constrains included SFA cooling time and limiting region heat loads. Fitness 

function was therefore defined as the standard deviation of the total heat loads among the casks. 

Except for the standard deviation minimization, the results in terms of mean, minimum and 

maximum cask heat load, as well as the total load in the campaign are also presented. 

1 INTRODUCTION 

Nuclear power plant Krsko opted for Spent Fuel Dry Storage (SFDS) to ensure place for 

spent fuel assemblies (SFA) in the Spent Fuel Pool (SFP) for additional 20 years of prolonged 

operation. The SFAs will be probably relocated from the SFP to the SFDS in four loading 

campaigns; in Campaign 1 16 casks will be filled; in Campaign 2 also 16 casks; in Campaign 

3 12 casks, and in Campaign 4 18 casks. In total, 2294 SFAs will be placed in a dry storage 

building, arranged in 62 HI-STORM FW casks, 37 SFAs in each cask [1]. There is also an 

option of three loading campaigns, with above mentioned Campaign 3 and 4 united in one 

campaign, depending on the project development. 

There are different constraints that must be satisfied when arranging the SFAs in the 

casks. The most important is decay heat since the cooling of the casks is passive by design. The 

layout of the cask is limited by the total decay heat per cask. That is the maximal decay heat a 

cask can contain to be cooled adequately. When arranging the casks, it is possible to have 

maximal decay heat in one cask and the other cask may be much less thermally loaded. 

However, it is favourable to have uniform loading in all casks to avoid maximal thermal load 

if there are thermally underloaded casks. This problem can be solved by using optimization 

algorithms to arrange the casks under desired constraints. There is a wide spectrum of the 

optimization techniques that can be used for that purpose [2]. However, not many research 

studies have been published on optimization of the SFAs in casks. Spencer et al. proposed new 
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method for optimization of dry cask loadings called GAMMA-PC, which is based on greedy 

randomized adaptive search procedures embedded in a multiobjective evolutionary algorithm 

[3]. Solans et al. performed an optimization of the canister loading in deep geological 

repositories using first fit decreasing and genetic algorithm [4]. Bautista-Valhondo et al. applied 

a three steps approach in minimizing the standard deviation of the thermal load among casks. 

In the first step they used mixed integer linear programming to minimize the cost of the casks 

required. Then they used a deterministic algorithm to place the spent fuel assemblies in specific 

region of a specific casks. Lastly, they used local search algorithm to minimize the standard 

deviation [5]. 

In this paper, the application of optimization techniques such as Differential Evolution 

[6], Particle Swarm Optimization [7], and Sine Cosine Algorithm [8] for the SFAs arrangement 

in the casks was investigated. The algorithms were adopted for the problem of interest and 

implemented in the MATLAB code [9]. Each loading campaign was treated separately due to 

limitations such as minimal cooling time of 5 years in the SFP after a SFA is taken out of the 

reactor core. The starting time of each campaign and number of relocated elements is the same 

as in real NEK SFDS project [1]. The decay heats of the SFAs were calculated based on the 

foreseen operational history using the ORIGEN-S from the SCALE6.2.4 code package [10]. 

The optimization criterion was a uniformly distributed decay heat among the casks in each 

loading campaign. The constrains included SFA cooling time and region heat load limits.  

2 OPTIMIZATION TECHNIQUES 

Three optimization techniques were considered as a potential optimization tool for 

arranging SFAs into casks: Differential Evolution, Particle Swarm Optimization and Sine-

Cosine Algorithm. In the following subchapters a brief description of these techniques is 

provided. 

2.1 Differential Evolution 

Differential Evolution (DE) [6] is a population based parallel direct search optimization 

method. The DE uses evolution operator crossover, selection, and mutation, and it is based on 

real encoding. The algorithm starts with uniformly and randomly chosen initial population, 

covering the entire search space. 

The population size 𝑁𝑃 is arbitrarily determined by the user, as well as the crossover and 

mutation factor, 𝐶𝑅 and 𝐹 respectively. In the mutation phase, the next generation mutant 

individual is obtained by adding the weighted difference between two vectors in a population 

to a third vector: 

𝑣𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹(𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) (1)  

where 𝑟1, 𝑟2, 𝑟3 ∈ {1,2, … , 𝑁𝑃} are random indexes mutually different and different from 

𝑖. The diversity of the next generation population is achieved by introducing crossover: 

𝑢𝑖,𝐺+1 = {
𝑣𝑗𝑖,𝐺+1 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ 𝐶𝑅) 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟(𝑖)

𝑥𝑗𝑖,𝐺 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑏(𝑗) > 𝐶𝑅) 𝑜𝑟 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖)
}  𝑗 = 1,2, . . , 𝐷 

𝑢𝑖,𝐺+1 = (𝑢1𝑖,𝑔+1, 𝑢2𝑖,𝑔+1, … , 𝑢𝐷𝑖,𝑔+1) 

(2)  

where 𝐷 is the dimension of the vector, 𝑟𝑎𝑛𝑑𝑏(𝑗) is the 𝑗th evaluation of uniform 

random number generator in the range of (0,1), 𝑟𝑛𝑏𝑟(𝑖) is a random index in the range (1, 𝐷), 

ensuring that at least one parameter from 𝑣𝑗𝑖,𝐺+1 is inherited. 
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In the selection process, one should decide if the next generation population vector 

𝑢𝑖,𝐺+1 is going to replace the current generation population vector  𝑥𝑖,𝐺 by evaluating the 

fitness of the vectors: 

𝑢𝑖,𝐺+1 = {
𝑢𝑖,𝐺+1 𝑖𝑓 𝑓(𝑢𝑖,𝐺+1) < 𝑓(𝑥𝑖,𝐺 )

𝑥𝑖,𝐺 𝑒𝑙𝑠𝑒
}. (3)  

2.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) [7] is an optimization method inspired by the social 

behaviour of birds that maintain swarm actions. Each particle in the swarm depends on the 

actions of a swarm, i.e., the entire swarm is moving through the search space according to the 

best particle's actions. At the beginning, it is important to assign initial position and velocity of 

each particle in a swarm. The optimization process is iterative so in each iteration the position 

and velocity of a particle is update according to the equations: 

𝑣𝑖
𝑘+1 = 𝜔𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔𝑖
𝑘 − 𝑥𝑖

𝑘) (4)  

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (5)  

where 𝑘 denotes  𝑘th iteration, 𝑖 denotes 𝑖th particle in a swarm, 𝑟1 and 𝑟2 are random and 

independent variables uniformly distributed in the range (0,1),  𝑐1 and 𝑐2 are positive 

acceleration coefficients which control maximum step size, 𝜔 is inertial weight. To prevent 

particles from flying out of the solution area the velocities are conditioned by (−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥).  

2.3 Sine-Cosine Algorithm 

Sine – Cosine Algorithm (SCA) [8] is a population based optimization algorithm which 

uses a sine and cosine function to search through the domain of parameters being optimized. 

The population in the next generation (iteration) is obtained according to: 

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝑟1 sin(𝑟2) |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|, 𝑟4 < 0.5

𝑋𝑖
𝑡 + 𝑟1 cos(𝑟2) |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|, 𝑟4 ≥ 0.5

 
(6)  

where 𝑋𝑖
𝑡 is the current solution, 𝑖 is the 𝑖-th member of population, 𝑡 is the 𝑡-th iteration, 

𝑃𝑖
𝑡 is best solution so far, 𝑟1 is the coefficient which determines the direction of the movement 

through the domain, 𝑟2 determines the length of the movement towards or from the best solution 

so far, 𝑟3 is used to stochastically assign weight to the best solution so far and 𝑟4 determines 

whether sine or cosine function will be used.  

Coefficient 𝑟1 is calculated as follows: 

𝑟1 = 𝑎 − 𝑡
𝑎

𝑇
 (7)  

where 𝑇 is the maximal number of iterations, and 𝑎 is a constant. Coefficient 𝑟2 is 

randomly selected in the interval [0, 2𝜋]. If the coefficient 𝑟3>1, the influence of the best 

solution so far is emphasized, while for 𝑟3<1 the influence of the best solution so far is 

diminished. Coefficient 𝑟4 is randomly selected in the interval [0, 1]. 



1002.4 

Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, September 6-9, 2021 

3 METHODOLOGY 

The optimization of SFA layout in casks was performed for two cases. In Case A four 

loading campaigns were considered: in the first campaign 16 casks; in the second also 16 casks; 

in the third 12 casks; and in the last one 18 casks. For the Case B three campaigns were 

considered with the last two campaigns from Case A merged in one campaign in which 30 casks 

will be loaded. In both cases 62 casks will be loaded. Each cask can hold up to 37 SFA. The 

starting date of each campaign loading for both cases is given in Table 1. 

 

Table 1: Start dates of campaigns in case A and B 

Campaign 
Start date 

Case A Case B 

1 01.01.2022 01.01.2022 

2 01.01.2028 01.01.2028 

3 09.01.2038 29.12.2048 

4 29.12.2048 - 

 

In this paper, the foreseen characteristics of SFAs according to original SFDS project 

design [1] were considered. There are 2294 SFAs with foreseen discharge date, burnup and 

enrichment specific for each element. These characteristics were based on the existing operating 

experience and existing spent fuel in the SFP in the Krsko NPP.  

There are three criteria set by the SFDS project design that have to be taken into account 

during the arrangement of the SFAs in the casks. The first is the minimum cooling time of 5 

years in the SFP set to facilitate the manipulation of the SFAs with decreased decay heat during 

that time. The second is a region-wise decay heat limit (Figure 1). Each cask is divided into 

three spatial regions with decay heat limits as follows: 

 

 

 

• Region 1 <   875 W 

• Region 2 < 1700 W 

• Region 3 <   890 W 

  
Figure 1: Spatial regions 

This region-wise division is introduced to balance shielding and cooling properties of casks. 

Higher neutron and gamma source intensity means higher decay heat. From the shielding point 

of view, it is favourable to place the SFAs with the higher source intensity in the innermost 

region and the ones with lower in the outermost region. On the other hand, from the thermal 

point of view, cooling is more efficient if the SFAs with higher decay heat are placed outwards 

and the ones with lower inwards. The balance between these two is to place the SFAs with 

higher source intensity and thus higher decay heat in the middle region. The third criterion is 

the limit decay heat of 42 kW per cask which was not used as a constraint in the optimization 

process, but the results will be checked against it. 

 Thus, before optimization, it was convenient to divide the data into sets taking into 

account the cooling limit. This resulted in four datasets corresponding to each campaign in Case 

A and three datasets for three campaigns in Case B. The criterion is: 

 

Starting date of a campaign – discharged date of a SFA > 5 years (8) 
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Next, the division by the second criterium of region-wise decay heat limits resulted in 

three subsets for each campaign. It is important to note that all the data which belong to dataset 

for Campaign 1 are also applicable for other campaigns since their starting date is later than 

campaign 1. Thus, Campaign 1 was optimized the first due and then Campaigns 2, 3 and 4. In 

each campaign, the SFAs in region 1 were selected, and then region 3 and 2. All the SFAs that 

are applicable for region 1 are also applicable for region 3 and 2 due to higher decay heat limit.  

Having datasets ready, the decay heat calculations were the next step in this methodology. The 

decay heat was calculated for each SFA using ORIGEN-S module of the SCALE6.2.3 package 

[10]. For the data that may be applicable for multiple campaigns, at this point the cooling times 

until the start of each campaign were calculated and used in ORIGEN-S. For example, a SFA 

that belongs to first campaign is also applicable for all next campaigns. Therefore, four cooling 

times were calculated according to Eq. (8) and corresponding decay heats were calculated 

afterwards. If this SFA is not selected for the first campaign, it is transferred to the next 

campaign and there is no need for another decay heat calculation since all possible decay heats 

were calculated at once before the optimization process has started. 

The three above described optimization methods were applied for optimizing the layout 

of the SFAs in casks specific for the SFDS project in the Krsko NPP. The optimization criterion 

is uniform decay heat among the casks in each campaign. The decay heat of each cask is 

calculated as the sum of decay heats of all the SFAs in the that cask. Thus, the fitness function 

is defined as the standard deviation of the decay heats of the casks belonging to certain 

campaign. For example, for Campaign 1, the standard deviation of decay heats of the first 16 

casks was calculated. Using the optimization techniques, through multiple iterations and 

multiple populations, we find the combination with the lowest standard deviation of decay 

heats. The number of iterations was set as maximal possible, which was calculated as the ratio 

of the available data and the number of casks in campaign under consideration. The number of 

populations is set as nPop=100. The optimization process stops when all iterations were 

conducted. The DE method requires user defined mutation factor F and crossover factor CR, 

while the SCA method requires constant a. Based on previous experience and literature 

references, these parameters are set as follows: F=0.8, CR=0.8 and a=2. 

4 RESULTS 

4.1 Case A 

This section gives the results of the optimization process for the Case A. In Table 2 the 

comparison of the optimization techniques is provided in terms of standard deviation, mean 

decay heat, maximal and minimal decay heat, and the total load in the campaign. From these 

results it can be seen that the SCA method resulted with the lowest standard deviation of decay 

heats among the casks in all campaigns except Campaign 4 for which PSO method gave smaller 

standard deviation. This means that optimization methods select different SFAs and therefore 

mean decay heat is different for each optimization method. It can also be seen that the maximal 

decay heat is much less than the project design limit of 42 kW per cask. That means that for the 

data used, it is not necessary to implement the maximal decay heat per cask as a constraint in 

the optimization process. It is interesting, however, that the standard deviation obtained by any 

method increases in subsequent campaigns, and it is especially higher in the last campaign. That 

is because there are more SFAs in that campaign than in the others, but more importantly 

because in the last campaigns there is not much space for optimization since all remaining 

elements have to be loaded. This means that in the last campaign we cannot select which SFA 

to load, but what is possible to be done is maneuvering with the arrangement of the SFAs in the 

casks to obtain as low standard deviation as possible. 
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Table 2: Comparison of the optimization techniques in terms of standard deviation, mean 

decay heat, maximal and minimal decay heat, and the total decay heat for each campaign in 

Case A (four campaigns) 

Campaign Method Std [W] 
Mean decay 

heat [W] 

Maximal decay 

heat [W] 

Minimal decay 

heat [W] 

Total decay 

heat [W] 

1 

DE 10.56 18971.41 18992.81 18955.04 303542.59 

PSO 20.18 17279.74 17328.70 17248.55 276475.89 

SCA 1.27 17579.34 17581.19 17577.23 281269.48 

2 

DE 70.78 18376.43 18511.76 18257.93 294022.90 

PSO 32.22 19297.90 19348.43 19237.98 308766.34 

SCA 2.77 18885.44 18891.00 18880.82 302167.07 

3 

DE 51.52 21521.13 21625.13 21434.16 258253.59 

PSO 36.78 21714.08 21758.40 21641.63 260568.99 

SCA 5.37 21477.38 21484.90 21467.90 257728.59 

4 

DE 430.14 22773.96 23378.45 22023.35 409931.33 

PSO 226.83 22842.59 23252.61 22493.87 411166.67 

SCA 288.46 23005.83 23801.83 22648.41 414104.96 

 

  

Figure 2: Optimization process for different 

methods Case A 

Figure 3: Optimization process for all 

campaigns conducted by the SCA method 

Case A 

The optimization process, ie. the standard deviation as a function of iterations conducted 

for Campaign 1 in Case A for different methods is shown in Figure 2. Note that the iteration 

process is repeated for each element added. This figure shows results for the last added element 

in Region 2 of Campaign 1 in Case A. The standard deviation decreases with the number of 

iterations for all methods. Recall, the number of iterations was set maximal possible and the 

stopping criterion was all iteration conducted. It can be seen that only six iterations were 

required for the SCA which gave the smallest standard deviation. The optimization process for 

all campaigns conducted by the SCA method is shown in Figure 3. From this figure, it is clear 
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that for the Campaign 1 there were many available data, so the number of possible iterations is 

higher than in other campaigns. It is also clear that the optimization process for the last SFA in 

Campaign 4 could not be iterated because there were no SFAs to maneuver with. An example 

of the optimized layout of the Casks 1 decay heat of each element is given in Figure 4.  

 

 
Figure 4: Decay heat layout for Cask 1 of Campaign 1 in Case A 

4.2 Case B 

The results for Case B are shown in Table 3 and the optimization process is shown in 

Figure 5 for Campaign 1 for different methods and in Figure 6 for all campaigns optimized 

using SCA method. It can again be observed that SCA method resulted in a significantly lower 

standard deviation, except for the last campaign. In this case, the maximal decay heat per cask 

is still lower than the limiting 42 kW. From the obtained results it can be concluded that Case 

B is more favourable than Case A. In case B, we obtained lower standard deviation in the last 

campaign, but it is also important to note that after Campaign 2 the rest of the SFAs will have 

longer cooling time and therefore lower decay heat and source intensity. 

 

Table 3: Comparison of the optimization techniques in terms of standard deviation, mean 

decay heat, maximal and minimal decay heat, and the total decay heat for each campaign in 

Case B (three campaigns). 

Campaign Method Std [W] 
Mean decay 

heat [W] 

Maximal decay 

heat [W] 

Minimal decay 

heat [W] 

Total decay 

heat [W] 

1 

DE 14.84 19117.84 19134.71 19083.58 305885.42 

PSO 21.37 20020.28 20048.36 19972.09 320324.52 

SCA 0.85 17644.81 17646.84 17643.37 282316.88 

2 

DE 70.08 18363.51 18480.81 18256.68 293816.16 

PSO 18.48 17523.08 17553.60 17490.94 280369.29 

SCA 6.61 18832.12 18838.26 18809.72 301313.88 

3 

DE 431.67 20820.34 21592.98 20178.65 624610.14 

PSO 191.19 20930.65 21354.69 20489.29 627919.48 

SCA 240.95 20969.93 21511.11 20433.47 629097.88 
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Figure 5: Optimization process for different 

methods Case B 

Figure 6: Optimization process for all 

campaigns conducted by the SCA method 

Case B 

5 CONCLUSIONS 

In this research, the optimization of the SFAs arrangement in the casks was performed 

for two loading cases based on the advanced optimization algorithms such as Differential 

Evolution, Particle Swarm Optimization, and Sine Cosine Algorithm. The results showed that 

in both cases the SCA method resulted with the lowest standard deviation of decay heat among 

the casks in all campaigns except Campaign 4. It was also showed that in both cases the 

maximal decay heat is much less than the project design limit of 42 kW per cask. That means 

that for the data used, it is not necessary to implement the maximal decay heat per cask as a 

constraint in the optimization process. It is interesting, however, that the standard deviation 

obtained by any method increases in subsequent campaigns, and it is especially higher in the 

last campaign. That is because there are more SFAs in that campaign than in the others, but 

more importantly because in the last campaigns there is not much space for optimization since 

all remaining elements have to be loaded. This means that in the last campaign we cannot select 

which SFA to load, but what is possible to be done it a maneuvering with the arrangement of 

the SFAs in the casks to obtain as low standard deviation as possible. 

The optimization process showed that the standard deviation decreases with the number 

of iterations for all methods. Only six iterations were required for the SCA method, which gave 

the lowest standard deviation. The optimization process for different campaigns showed that 

there were many available data for Campaign 1 so the number of possible iterations is higher 

than in other campaigns. It is also clear that the optimization process for the last SFA in 

Campaign 4 in Case A and in Campaigns 3 in Case B could not be iterated because there were 

no SFAs to maneuver with. 

Case B resulted in lower standard deviations, especially in the last campaign, but it is also 

important to note that after Campaign 2 the rest of the SFAs will have longer cooling time and 

therefore lower decay heat and source intensity. However, other factors may prevail in making 

the decision on the number of campaigns. 

The purpose of this research was to illustrate the potential of advanced optimization 

algorithms for SFA arrangement in the casks. The obtained standard deviations by any method 

are way lower than the ones calculated for the vendor’s proposed loading plan, which are around 

couple of thousands. However, there are many other criteria that were taken into account by the 

vendor, for example inserts.  
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